ધારો કે $X$ અને $Y$ ઘટનાઓ એવી હોય કે જેથી $P(X \cup Y) = P(X \cap Y).$
વિધાન $- 1 : $$P(X \cap Y ) = P(X' \cap Y') = 0$
વિધાન $- 2 :$ $P(X) + P(Y) = 2P(X \cap Y).$
વિધાન$-1$ સાચું છે. વિધાન$-2$ સાચું છે અને વિધાન$-1$ માટે વિધાન$-2$ સાચી સમજૂતી છે.
વિધાન$-1$ સાચું છે. વિધાન$-2$ સાચું છે અને વિધાન$-1$ માટે વિધાન$-2$ સાચી સમજૂતી નથી.
વિધાન$-1$ સાચું છે, વિધાન$-2$ ખોટું છે.
વિધાન$-1$ ખોટું છે, વિધાન$-2$ સાચું છે.
જો $E$ અને $F$ નિરપેક્ષ ઘટનાઓ હોય, તો સાબિત કરો કે ઘટનાઓ $E$ અને $F'$ પણ નિરપેક્ષ છે.
ઘટના ${\text{A, B}}$ છે $P(A \cup B)\,\, = \,\,\frac{3}{4},\,P(A \cap B)\,\, = \,\,\frac{1}{4},\,P(A')\,\, = \,\,\frac{2}{3}$ તો ${\text{P (A' }} \cap {\text{ B)}} = ......$
જો ઘટનાઓ $A$ અને $B$ માટે $\mathrm{P}(\mathrm{A})=\frac{1}{4}, \mathrm{P}(\mathrm{B})=\frac{1}{2}$ અને $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$ હોય, તો $P(A -$ નહિ અને $B-$ નહિ) શોધો.
એક થેલામાં $9$ તકતી છે. તે પૈકી $4$ લાલ રંગની, $3$ ભૂરા રંગની અને $2$ પીળા રંગની છે. પ્રત્યેક તકતી આકા૨ અને માપમાં સમરૂપ છે. થેલામાંથી એક તકતી યાદચ્છિક રીતે કાઢવામાં આવે છે. જો તે ,લાલ રંગની અથવા ભૂરા રંગની હોય તે અનુસાર કાઢવામાં આવેલ તકતીની સંભાવના શોધો.
બે વિદ્યાર્થીઓ અનિલ અને આશિમા એક પરીક્ષામાં હાજર રહે છે. અનિલની પરીક્ષામાં પાસ થવાની સંભાવના $0.05$ અને આશિમાની પરીક્ષામાં પાસ થવાની સંભાવના $0.10$ છે. બંનેની પરીક્ષામાં પાસ થવાની સંભાવના $0.02 $ છે. નીચેની ઘટનાની સંભાવના શોધો : બંનેમાંથી ઓછામાં ઓછી એક વ્યક્તિ પરીક્ષામાં પાસ નહિ થાય.