यदि $f(x) = \frac{x}{{x - 1}} = \frac{1}{y}$, तो $f(y) = $
$x$
$x + 1$
$x - 1$
$1 - x$
$f(x)=\sin x$ द्वारा प्रदत्त फलन $f:\left[0, \frac{\pi}{2}\right] \rightarrow R$ तथा $g(x)=\cos x$ द्वारा प्रदत्त फलन $g:\left[0, \frac{\pi}{2}\right] \rightarrow R$ पर विचार कीजिए। सिद्ध कीजिए कि $f$ तथा $g$ एकैकी है, परंतु $f+g$ एकैकी नहीं है।
संक्रियाओं में किसी का तत्समक है, वह बतलाइए।
फलन $f(x) = \frac{{{{\sec }^{ - 1}}x}}{{\sqrt {x - [x]} }},$ जहाँ $[.]$ महत्तम पूर्णांक फलन है, परिभाषित है
यदि $f(x) = (1 + {b^2}){x^2} + 2bx + 1$ तथा $m(b)$ दिये हुए $b$ के लिए, $f(x)$ का न्यूनतम मान है, तब $m(b)$ का परिसर (रेंज) है
माना $\mathrm{A}=\{1,2,3,5,8,9\}$ है। तब संभव फलनों $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{A}$ की संख्या ताकि प्रत्येक $\mathrm{m}, \mathrm{n} \in \mathrm{A}$ के लिये $\mathrm{f}(\mathrm{m} \cdot \mathrm{n})=\mathrm{f}(\mathrm{m}) \cdot \mathrm{f}(\mathrm{n})$ है जिसमें $\mathrm{m} \cdot \mathrm{n} \in \mathrm{A}$ है, होगी_____________.