संक्रियाओं में किसी का तत्समक है, वह बतलाइए।
An element $e$ $\in Q$ will be the identity element for the operation $^*$
if $a^{*} e=a=e^{*}$ $a$, for all $a \in Q$
However, there is no such element $e \in Q$ with respect to each of the six operations satisfying the above condition.
Thus, none of the six operations has identity.
माना $f: R \rightarrow R$ एक संतत फलन है जिसके लिए $f(3 x)-f(x)=x$ है। यदि $f(8)=7$ है, तो $f(14)$ बराबर है :
माना $A =\left\{x_{1}, x_{2}, \ldots, x_{7}\right\}$ तथा $B =\left\{y_{1}, y_{2}, y_{3}\right\}$ ऐसे दो समुच्चय हैं जिनमें क्रमशः सात तथा तीन विभित्र अवयव हैं ; तो ऐसे फलनों $f: A \rightarrow B$ की कुल संख्या, जो कि आच्छादक हैं, यदि $A$ में ऐसे ठीक तीन $x$ अवयव हैं जिनके लिए $f(x)=y_{2}$ है
माना कि एक फलन $f: R \rightarrow R$ सभी $x , y \in R$ के लिए $f( x + y )=f( x ) f( y )$ को संतुष्ट करता है तथा $f(1)=3$ है। यदि $\sum_{i=1}^{ n } f( i )=363$, तो $n$ बराबर है
एक फलन $f ( x ), f ( x )=\frac{5^{ x }}{5^{ x }+5}$, द्वारा दिया गया है, तो श्रेणी $f \left(\frac{1}{20}\right)+ f \left(\frac{2}{20}\right)+ f \left(\frac{3}{20}\right)+\ldots \ldots+ f \left(\frac{39}{20}\right)$ का योगफल बराबर है
दी गयी श्रेणी का मान होगा $\sum \limits_{n=0}^{1947} \frac{1}{2^n+\sqrt{2^{1947}}}$