If $f(x) = \frac{x}{{x - 1}} = \frac{1}{y}$, then $f(y) = $
$x$
$x + 1$
$x - 1$
$1 - x$
Let $f, g: N -\{1\} \rightarrow N$ be functions defined by $f(a)=\alpha$, where $\alpha$ is the maximum of the powers of those primes $p$ such that $p^{\alpha}$ divides $a$, and $g(a)=a+1$, for all $a \in N -\{1\}$. Then, the function $f+ g$ is.
The period of the function $f (x) =$$\frac{{|\sin x| + |\cos x|}}{{|\sin x - \cos x|}}$ is
Let $f(x) = sin\,x,\,\,g(x) = x.$
Statement $1:$ $f(x)\, \le \,g\,(x)$ for $x$ in $(0,\infty )$
Statement $2:$ $f(x)\, \le \,1$ for $(x)$ in $(0,\infty )$ but $g(x)\,\to \infty$ as $x\,\to \infty$
Let $P(x)$ be a polynomial with real coefficients such that $P\left(\sin ^2 x\right)=P\left(\cos ^2 x\right)$ for all $x \in[0, \pi / 2)$. Consider the following statements:
$I.$ $P(x)$ is an even function.
$II.$ $P(x)$ can be expressed as a polynomial in $(2 x-1)^2$
$III.$ $P(x)$ is a polynomial of even degree.
Then,
If $f(x) = \frac{{{{\cos }^2}x + {{\sin }^4}x}}{{{{\sin }^2}x + {{\cos }^4}x}}$ for $x \in R$, then $f(2002) = $