If $\tan \theta = \frac{{x\,\sin \,\phi }}{{1 - x\,\cos \,\phi }}$ and $\tan \,\phi = \frac{{y\sin \,\theta }}{{1 - y\,\cos \,\theta }}$, then $\frac{x}{y} = $

  • A

    $\frac{{\sin \phi }}{{\sin \theta }}$

  • B

    $\frac{{\sin \theta }}{{\sin \phi }}$

  • C

    $\frac{{\sin \phi }}{{1 - \cos \theta }}$

  • D

    $\frac{{\sin \theta }}{{1 - \cos \phi }}$

Similar Questions

If $5\tan \theta = 4,$ then $\frac{{5\sin \theta - 3\cos \theta }}{{5\sin \theta + 2\cos \theta }} = $

Find the angle in radian through which a pendulum swings if its length is $75\, cm$ and the tip describes an arc of length.

$10 \,cm$

The value of the expression $1 - \frac{{{{\sin }^2}y}}{{1 + \cos \,y}} + \frac{{1 + \cos \,y}}{{\sin \,y}} - \frac{{\sin \,\,y}}{{1 - \cos \,y}}$ is equal to

Find the values of other five trigonometric functions if $\sec x=\frac{13}{5}, x$ lies in fourth quadrant.

Find the value of $\cos \left(-1710^{\circ}\right)$.