If $\tan \theta = \frac{{x\,\sin \,\phi }}{{1 - x\,\cos \,\phi }}$ and $\tan \,\phi = \frac{{y\sin \,\theta }}{{1 - y\,\cos \,\theta }}$, then $\frac{x}{y} = $

  • A

    $\frac{{\sin \phi }}{{\sin \theta }}$

  • B

    $\frac{{\sin \theta }}{{\sin \phi }}$

  • C

    $\frac{{\sin \phi }}{{1 - \cos \theta }}$

  • D

    $\frac{{\sin \theta }}{{1 - \cos \phi }}$

Similar Questions

Observe that, at any instant, the minute and hour hands of a clock make two angles between them whose sum is $360^{\circ}$. At $6: 15$ the difference between these two angles is  $....^{\circ}$

  • [KVPY 2012]

If $\sin x+\sin ^2 x=1, x \in\left(0, \frac{\pi}{2}\right)$, then $\left(\cos ^{12} x+\tan ^{12} x\right)+3\left(\cos ^{10} x+\tan ^{10} x+\cos ^8 x+\tan ^8 x\right)$ $+\left(\cos ^6 x+\tan ^6 x\right)$ is equal to

  • [JEE MAIN 2025]

Find the value of $\sin 15^{\circ}$

Prove the $\cos \left(\frac{3 \pi}{2}+x\right) \cos (2 \pi+x)\left[\cot \left(\frac{3 \pi}{2}-x\right)+\cot (2 \pi+x)\right]=1$

Prove that $\cos \left(\frac{3 \pi}{4}+x\right)-\cos \left(\frac{3 \pi}{4}-x\right)=-\sqrt{2} \sin x$