Find the values of other five trigonometric functions if $\sec x=\frac{13}{5}, x$ lies in fourth quadrant.

Vedclass pdf generator app on play store
Vedclass iOS app on app store
$\sec x=\frac{13}{5}$
 
$\cos x=\frac{1}{\sec x}=\frac{1}{\left(\frac{13}{5}\right)}=\frac{5}{13}$
 
$\sin ^{2} x+\cos ^{2}=1$
 
$\Rightarrow \sin ^{2} x=1-\cos ^{2} x$
 
$\Rightarrow \sin ^{2} x=1-\left(\frac{5}{13}\right)^{2}$
 
$\Rightarrow \sin ^{2} x=1-\frac{25}{169}=\frac{144}{169}$
 
$\Rightarrow \sin x=\pm \frac{12}{13}$
 
since $x$ lies in the $4^{\text {th }}$ quadrant, the value of $\sin x$ will be negative.
 
$\therefore \sin x=-\frac{12}{13}$
 
$\cos ec \,x=\frac{1}{\sin x}=\frac{1}{\left(-\frac{12}{13}\right)}=-\frac{13}{12}$
 
$\tan x=\frac{\sin x}{\cos x}=\frac{\left(\frac{-12}{13}\right)}{\left(\frac{5}{13}\right)}=-\frac{12}{5}$
 
$\cot x=\frac{1}{\tan x}=\frac{1}{\left(-\frac{12}{5}\right)}=-\frac{5}{12}$ 

Similar Questions

If $\theta $ and $\phi $ are angles in the $1^{st}$ quadrant such that $\tan \theta = 1/7$ and $\sin \phi = 1/\sqrt {10} $.Then

If $\cos x + {\cos ^2}x = 1,$ then the value of ${\sin ^2}x + {\sin ^4}x$ is

If $0 < x < \pi $ and $\cos x + \sin x = \frac{1}{2}$,then $tan \,x$ is  

  • [AIEEE 2006]

Prove that $\sin (n+1) x \sin (n+2) x+\cos (n+1) x \cos (n+2) x=\cos x$

Find the degree measures corresponding to the following radian measures (Use $\pi=\frac{22}{7}$ ).

$\frac{5 \pi}{3}$