The value of the expression $1 - \frac{{{{\sin }^2}y}}{{1 + \cos \,y}} + \frac{{1 + \cos \,y}}{{\sin \,y}} - \frac{{\sin \,\,y}}{{1 - \cos \,y}}$ is equal to

  • A

    $0$

  • B

    $1$

  • C

    $\sin \,y$

  • D

    $\cos \,y$

Similar Questions

Find the value of:

$\sin 75^{\circ}$

If $\sin \theta + \cos \theta = 1$, then $\sin \theta \cos \theta = $

If $\tan \theta + \sin \theta = m$ and $\tan \theta - \sin \theta = n,$ then

  • [IIT 1970]

If $\sin x + {\rm{cosec}}\,x = 2,$ then $sin^n x + cosec^n x$ is equal to

If $x + \frac{1}{x} = 2\cos \alpha $, then ${x^n} + \frac{1}{{{x^n}}} = $