Find the angle in radian through which a pendulum swings if its length is $75\, cm$ and the tip describes an arc of length.

$10 \,cm$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that in a circle of radius $r$ unit, if an arc of length $l$ unit subtends

An angle $\theta$ radian at the centre, then $\theta=\frac{l}{r}$

It is given that $r=75 \,cm$

Here, $l=10\, cm$

$\theta=\frac{10}{75}\, radian =\frac{2}{15}\, radian$

Similar Questions

Find the radian measures corresponding to the following degree measures:

$25^{\circ}$

If $\left| {\cos \,\theta \,\left\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\}\,} \right|\, \le k,$ then the value of $k$ is

If ${\tan ^2}\alpha {\tan ^2}\beta + {\tan ^2}\beta {\tan ^2}\gamma + {\tan ^2}\gamma {\tan ^2}\alpha $$ + 2{\tan ^2}\alpha {\tan ^2}\beta {\tan ^2}\gamma = 1,$ then the value of ${\sin ^2}\alpha + {\sin ^2}\beta + {\sin ^2}\gamma $ is

The value of $\frac{{\cot 54^\circ }}{{\tan 36^\circ }} + \frac{{\tan 20^\circ }}{{\cot 70^\circ }}$ is

If $(\sec \alpha + \tan \alpha )(\sec \beta + \tan \beta )(\sec \gamma + \tan \gamma )$$ = \tan \alpha \tan \beta \tan \gamma $, then $(\sec \alpha - \tan \alpha )(\sec \beta - \tan \beta )$$(\sec \gamma - \tan \gamma ) = $