यदि $\overrightarrow{ A }=(2 \hat{ i }+3 \hat{ j }-\hat{ k }) m$ और $\overrightarrow{ B }=(\hat{ i }+2 \hat{ j }+2 \hat{ k })$ $m$ हैं। सदिश $\overrightarrow{ A }$ का, सदिश $\overrightarrow{ B }$ के अनुदिश घटक का परिमाण $........m$ होगा।

  • [JEE MAIN 2022]
  • A

    $2$

  • B

    $1$

  • C

    $3$

  • D

    $4$

Similar Questions

यदि एक सदिश $2\hat i + 3\hat j + 8\hat k$ दूसरे सदिश $4\hat j - 4\hat i + \alpha \hat k$ पर लम्बवत् हो तो $\alpha $ का मान होगा

  • [AIPMT 2005]

तीन सदिश $\mathop a\limits^ \to ,\,\mathop b\limits^ \to $ और $\mathop c\limits^ \to $, सम्बन्ध $\mathop a\limits^ \to \;\,.\,\mathop b\limits^ \to = 0$ तथा $\mathop a\limits^ \to \,.\,\mathop c\limits^ \to = 0.$ को संतुष्ट करते हैं तो सदिश $\mathop a\limits^ \to $ निम्न के समान्तर है

  • [AIIMS 1996]

सदिश $\overrightarrow{ A }=\hat{ i }+\hat{ j }+\hat{ k }$ का सदिश $\overrightarrow{ B }=\hat{ i }+\hat{ j }$ पर प्रक्षेप ज्ञात कीजिये।

  • [JEE MAIN 2021]

किन्ही दो सदिश $\overrightarrow A $ तथा $\overrightarrow B $ के लिये यदि $\mathop A\limits^ \to \,.\,\mathop B\limits^ \to = \,\,|\mathop A\limits^ \to \times \mathop B\limits^ \to |$ हो तो $\mathop C\limits^ \to = \mathop A\limits^ \to + \mathop B\limits^ \to $ का परिमाण होगा

 $\overrightarrow {\;A} $ और $\overrightarrow {\;B} $ दो सदिश हैं जिनके बीच का कोण $\theta$ है। यदि $|\overrightarrow { A } \times \overrightarrow { B }|=\sqrt{3}(\overrightarrow { A } \cdot \overrightarrow { B }),$ तो $\theta$ का मान होगा

  • [AIPMT 2007]