If $\overrightarrow{ A }=(2 \hat{ i }+3 \hat{ j }-\hat{ k }) \;m$ and $\overrightarrow{ B }=(\hat{ i }+2 \hat{ j }+2 \hat{ k })\; m$. The magnitude of component of vector $\overrightarrow{ A }$ along vector $\vec{B}$ will be $......m$.

  • [JEE MAIN 2022]
  • A

    $2$

  • B

    $1$

  • C

    $3$

  • D

    $4$

Similar Questions

The angle made by the vector $\left( {\hat i\,\, + \;\,\hat j} \right)$ with $x-$ axis and $y$ axis is

The two vectors $\vec A = -2\widehat i + \widehat j + 3\widehat k$ and $\vec B = 7\widehat i + 5\widehat j + 3\widehat k$ are :-

The value of $(\overrightarrow A + \overrightarrow B )\, \times (\overrightarrow A - \overrightarrow B )$ is

If diagonals of a parallelogram are $\left( {5\hat i - 4\hat j + 3\hat k} \right)$ and $\left( {3\hat i + 2\hat j - \hat k} \right)$ then its area is

Two forces ${\vec F_1} = 5\hat i + 10\hat j - 20\hat k$ and ${\vec F_2} = 10\hat i - 5\hat j - 15\hat k$ act on a single point. The angle between ${\vec F_1}$ and ${\vec F_2}$ is nearly ....... $^o$