यदि $\tan 2 A =\cot \left( A -18^{\circ}\right)$, जहाँ $2 A$ एक न्यून कोण है, तो $A$ का मान ज्ञात कीजिए।

  • A

    $108$

  • B

    $90$

  • C

    $18$

  • D

    $36$

Similar Questions

$(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)=..........$

यदि $\sin ( A - B )=\frac{1}{2}, \cos ( A + B )=\frac{1}{2}, 0^{\circ}< A + B \leq 90^{\circ}, A > B ,$ तो $A$ और $B$ ज्ञात कीजिए

निम्नलिखित सर्वसमिका सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है :

$\left(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\right)=\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\tan ^{2} A$

दिखाइए कि

$(i)$ $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}=1$

$(ii)$ $\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}=0$

$\frac{1+\tan ^{2} A}{1+\cot ^{2} A}=........$