If $\tan 2 A=\cot \left(A-18^{\circ}\right),$ where $2 A$ is an acute angle, find the value of $A .$ (in $^{\circ}$)
$108$
$90$
$18$
$36$
State whether the following are true or false. Justify your answer.
The value of $\sin \theta$ increases as $\theta$ increases.
$(\sec A+\tan A)(1-\sin A)=..........$
Evaluate the following:
$\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$
If $\angle A$ and $\angle B$ are acute angles such that $\cos A =\cos B ,$ then show that $\angle A =\angle B$.
In $\triangle ABC ,$ right-angled at $B , AB =24 \,cm , BC =7 \,cm .$ Determine:
$(i)$ $\sin A, \cos A$
$(ii)$ $\sin C, \cos C$