दिखाइए कि

$(i)$ $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}=1$

$(ii)$ $\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}=0$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

(i) $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}$

$=\tan \left(90^{\circ}-42^{\circ}\right) \tan \left(90^{\circ}-67^{\circ}\right) \tan 42^{\circ} \tan 67^{\circ}$

$=\cot 42^{*} \cot 67^{*} \tan 42^{*} \tan 67^{\circ}$

$=\left(\cot 42^{\circ} \tan 42^{\circ}\right)\left(\cot 67^{*} \tan 67^{\circ}\right)$

$=(1)(1)$

$=1$

(ii) $\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}$

$=\cos \left(90^{\circ}-52^{\circ}\right) \cos \left(90^{\circ}-38^{\circ}\right)-\sin 38^{\circ} \sin 52^{\circ}$

$=\sin 52^{*} \sin 38^{\circ}-\sin 38^{\circ} \sin 52^{*}$

$=0$

Similar Questions

निम्नलिखित सर्वसमिका सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है :

$(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}$

सिद्ध कीजिए कि $\frac{\cot A-\cos A}{\cot A+\cos A}=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}$

निम्नलिखित सर्वसमिका सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है :

सर्वकमिका $\operatorname{cosec}^{2} A=1+\cot ^{2} A$ को लागु करके 

$\frac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec} A+\cot A$

मान निकालिए :

$\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$

त्रिभुज $ABC$ में, जिसका कोण $B$ समकोण है, यदि $\tan A =\frac{1}{\sqrt{3}}$, तो निम्नलिखित के मान ज्ञात कीजिए:

$(i)$ $\sin A \cos C+\cos A \sin C$

$(ii)$ $\cos A \cos C-\sin A \sin C$