જો $f( x + y )=f( x ) f( y )$ અને $\sum \limits_{ x =1}^{\infty} f( x )=2, x , y \in N$ જ્યાં $N$ એ બધી પ્રાકૃતિક સંખ્યાઓનો ગણ હોય તો $\frac{f(4)}{f(2)}$ ની કિમત શોધો
$\frac{1}{9}$
$\frac{4}{9}$
$\frac{1}{3}$
$\frac{2}{3}$
ધારો કે $S =\{1,2,3,4\}$ તો ગણ $\{f: S \times S \rightarrow S : f$ એ વ્યાત્પ છે અને $f( a , b )=f( b , a ) \geqslant a ; \forall( a , b ) \in S \times S \}$ નાં ધટકોની સંખ્યા...........છે
જો શુન્યેતર વાસ્તવિક સંખ્યાઓ $p$ અને $q$ એવી મળે કે જેથી min $f(x) > max\, g(x)$ થાય, જ્યા $f(x) = x^2 + 2px + 2q^2$ અને $g(x) = -x^2 -2qx + p^2 (x \in R)$ હોય તો $|\frac{2p}{q}|$ ની કિમતો સમાવતો ગણ મેળવો.
ધારોકે $R =\{ a , b , c , d , e \}$ અને $S =\{1,2,3,4\}$ તો $f( a ) \neq 1$ હોય તેવા $f: R \rightarrow S$ વ્યાપ્ત વિધેયોની સંખ્યા $.........$ છે.
વિધેય $f(x) = {\sin ^{ - 1}}[{\log _2}(x/2)]$ નો પ્રદેશ મેળવો.
જો વિધેય $f(x)=\log _e\left(\frac{2 x+3}{4 x^2+x-3}\right)+\cos ^{-1}\left(\frac{2 x-1}{x+2}\right)$ નો પ્રદેશ $(\alpha, \beta]$ હોય, તો $5 \beta-4 \alpha$ નું મૂલ્ય___________ છે.