If $f( x + y )=f( x ) f( y )$ and $\sum \limits_{ x =1}^{\infty} f( x )=2, x , y \in N$ where $N$ is the set of all natural numbers, then the value of $\frac{f(4)}{f(2)}$ is
$\frac{1}{9}$
$\frac{4}{9}$
$\frac{1}{3}$
$\frac{2}{3}$
If $y = f(x) = \frac{{ax + b}}{{cx - a}}$, then $x$ is equal to
Let $f(x)=x^6-2 x^3+x^3+x^2-x-1$ and $g(x)=x^4-x^3-x^2-1$ be two polynomials. Let $a, b, c$ and $d$ be the roots of $g(x)=0$. Then, the value of $f(a)+f(b)+f(c)+f(d)$ is
The number of functions $f :\{1,2,3,4\} \rightarrow\{ a \in Z :| a | \leq 8\}$ satisfying $f ( n )+$ $\frac{1}{ n } f ( n +1)=1, \forall n \in\{1,2,3\}$ is
Let $f:(1,3) \rightarrow \mathrm{R}$ be a function defined by
$f(\mathrm{x})=\frac{\mathrm{x}[\mathrm{x}]}{1+\mathrm{x}^{2}},$ where $[\mathrm{x}]$ denotes the greatest
integer $\leq \mathrm{x} .$ Then the range of $f$ is
Let for $a \ne {a_1} \ne 0,$ $f\left( x \right) = a{x^2} + bx + c\;,g\left( x \right) = {a_1}{x^2} + {b_1}x + {c_1},p\left( x \right) = f\left( x \right) - g\left( x \right),$ If $p\left( x \right) = 0$ only for $ x=-1 $ and $p\left( { - 2} \right) = 2$ then value of $p\left( 2 \right)$ is