વિધેય $f(x) = {\sin ^{ - 1}}[{\log _2}(x/2)]$ નો પ્રદેશ મેળવો.
$[1, 4]$
$[-4, 1]$
$[-1, 4]$
એકપણ નહી.
વિધેય $f\left( x \right) = {\cos ^2}\left( {\sin x} \right) + {\sin ^2}\left( {\cos x} \right)$ નુ આવર્તમાન મેળવો.
જો $f(x) = \cos (\log x)$, તો $f(x)f(y) - \frac{1}{2}[f(x/y) + f(xy)] = $
${\sin ^{ - 1}}\left[ {{{\log }_3}\left( {\frac{x}{3}} \right)} \right]$ નો પ્રદેશ મેળવો.
$f : R \to R$ માટે
$f(x) = \left\{ {\begin{array}{*{20}{c}}
{{x^2} + 2mx - 1\,,}&{x \leq 0}\\
{mx - 1\,\,\,\,\,\,\,\,\,\,\,\,\,,}&{x > 0}
\end{array}} \right.$
જો $f (x)$ એક-એક વિધેય હોય તો $'m'$ ની કિમતોનો ગણ મેળવો.
સાબિત કરો કે વિધેય $f: N \rightarrow N ,$ $f(1)=f(2)=1$ અને પ્રત્યેક $x>2$ માટે $f(x)=x-1$, દ્વારા વ્યાખ્યાયિત હોય તો વ્યાપ્ત છે, પરંતુ એક-એક નથી.