જો $\sum \limits_{i=1}^{n}\left(x_{i}-a\right)=n$ અને $\sum \limits_{i=1}^{n}\left(x_{i}-a\right)^{2}=n a,(n, a>1)$ હોય તો અવલોકનો $x _{1}, x _{2}, \ldots, x _{ n }$ નું પ્રામાણિત વિચલન મેળવો
$n \sqrt{ a -1}$
$\sqrt{a-1}$
$a-1$
$\sqrt{n(a-1)}$
પાંચ અવલોકનોનો મધ્યક અને વિચરણ અનુક્રમે $5$ અને $9.20$ છે જો તેમાંથી ત્રણ અવલોકનો $1, 3$ અને $8$ હોય તો બાકીના અવલોકનોનો ગુણોત્તર મેળવો.
જો $v_1 =$ $\{13, 1 6, 1 9, . . . . . , 103\}$ નો વિચરણ અને $v_2 =$ $\{20, 26, 32, . . . . . , 200\}$ નો વિચરણ હોય તો $v_1 : v_2$ મેળવો.
પ્રથમ $n $ અયુગ્મ પ્રાકૃતિક સંખ્યાઓનું પ્રમાણિત વિચલન = …….
$15$ અવલોકનોનાં મધ્યક અને પ્રમાણત વિચલન અનુક્રમે $8$ અને $3$ માલુમ પડયા છે. ફરી ચકાસણી કરતાં એવું માલુમ પડયુ અવલોકન $20$ ને ભૂલથી $5$ વાંચવામાં આવ્યું હતું. તો સાચા વિચરણનું મૂલ્ય..............છે
$5$ અવલોકન વાળી માહિતીનો મધ્યક અને વિચરણ અનુક્રમે $5$ અને $8$ છે. જો $3$ અવલોકનો $1,3,5$ હોય તો બાકીના બે અવલોકનોનો ઘનનો સરવાળો મેળવો.