જો $\sum \limits_{i=1}^{n}\left(x_{i}-a\right)=n$ અને $\sum \limits_{i=1}^{n}\left(x_{i}-a\right)^{2}=n a,(n, a>1)$ હોય તો અવલોકનો $x _{1}, x _{2}, \ldots, x _{ n }$ નું પ્રામાણિત વિચલન મેળવો
$n \sqrt{ a -1}$
$\sqrt{a-1}$
$a-1$
$\sqrt{n(a-1)}$
એક ડિઝાઇનમાં બનાવેલ વર્તુળોના વ્યાસ (મિમીમાં) નીચે આપ્યા છે :
વ્યાસ | $33-36$ | $37-40$ | $41-44$ | $45-48$ | $49-52$ |
વર્તુળોની સંખ્યા | $15$ | $17$ | $21$ | $22$ | $25$ |
વર્તુળોના વ્યાસનું પ્રમાણિત વિચલન અને મધ્યક વ્યાસ શોધો.
$100$ અવલોકનોના સમૂહનો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $20$ અને $3 $ છે. પછીથી જાણ થાય છે કે ત્રણ અવલોકનો $21, 21$ અને $18$ ખોટાં હતાં. આ ખોટાં અવલોકનોને દૂર કરવામાં આવે તો મધ્યક અને પ્રમાણિત વિચલન શોધો.
ધારો કે $x_1, x_2, ……, x_n $ એ $n$ અવલોકનો છે અને ધારો કે $\bar x$એ એમનો સમાંતર મધ્યક છે અને $\sigma^2$ એ તેમનું વિચરણ છે.
વિધાન $ - 1 : 2x_1, 2x_2, ……, 2x_n$ નું વિચરણ $4\sigma^2$ છે.
વિધાન $- 2 : 2x_1, 2x_2, ….., 2x_n$ નો સમાંતર મધ્યક $4\,\bar x$છે.
ધારોકે નીચેના વિતરણ નું મધ્યક $\mu$ અને પ્રમાણિત વિચલન $\sigma$ છે.
$X_i$ | $0$ | $1$ | $2$ | $3$ | $4$ | $5$ |
$f_i$ | $k+2$ | $2k$ | $K^{2}-1$ | $K^{2}-1$ | $K^{2}-1$ | $k-3$ |
જ્યાં $\sum f_i=62$. જો $[x]$ એ મહત્તમ પૂર્ણાક $\leq x$ દર્શાવે,તો $\left[\mu^2+\sigma^2\right]=.......$
$8$ અવલોકનોનો મધ્યક અને વિચરણ અનુક્રમે $10$ અને $13.5$ છે જો તેમાંથી $6$ અવલોકનો $5,7,10,12,14,15,$ હોય તો બાકી રહેલા બીજા બે અવલોકનોનો ધન તફાવત ........... થાય