If $\sum \limits_{i=1}^{n}\left(x_{i}-a\right)=n$ and $\sum \limits_{i=1}^{n}\left(x_{i}-a\right)^{2}=n a,(n, a>1)$ then the standard deviation of $n$ observations $x _{1}, x _{2}, \ldots, x _{ n }$ is
$n \sqrt{ a -1}$
$\sqrt{a-1}$
$a-1$
$\sqrt{n(a-1)}$
Let $n \geq 3$. A list of numbers $0 < x_1 < x_2 < \ldots < x_n$ has mean $\mu$ and standard deviation $\sigma$. A new list of numbers is made as follows: $y_1=0, y_2=x_2, \ldots, x_{n-1}$ $=x_n-1, y_n=x_1+x_n$. The mean and the standard deviation of the new list are $\hat{\mu}$ and $\hat{\sigma}$. Which of the following is necessarily true?
If the mean deviation about the mean of the numbers $1,2,3, \ldots ., n$, where $n$ is odd, is $\frac{5(n+1)}{n}$, then $n$ is equal to
Mean and standard deviation of 100 observations were found to be 40 and 10 , respectively. If at the time of calculation two observations were wrongly taken as 30 and 70 in place of 3 and 27 respectively, find the correct standard deviation.
The mean of two samples of size $200$ and $300$ were found to be $25, 10$ respectively their $S.D.$ is $3$ and $4$ respectively then variance of combined sample of size $500$ is :-
If each observation of a raw data whose variance is ${\sigma ^2}$, is multiplied by $\lambda$, then the variance of the new set is