એક ડિઝાઇનમાં બનાવેલ વર્તુળોના વ્યાસ (મિમીમાં) નીચે આપ્યા છે : 

વ્યાસ  $33-36$ $37-40$ $41-44$ $45-48$ $49-52$
વર્તુળોની સંખ્યા $15$ $17$ $21$ $22$ $25$
 

વર્તુળોના વ્યાસનું પ્રમાણિત વિચલન અને મધ્યક વ્યાસ શોધો.  

Vedclass pdf generator app on play store
Vedclass iOS app on app store
Class Interval

Frequency

${f_i}$ 

Mid=point

${x_i}$

${y_i} = \frac{{{x_i} - 42.5}}{4}$ ${f_i}^2$ ${f_i}{y_i}$ ${f_i}{y_i}^2$
$33-36$ $15$ $34.5$ $-2$ $4$ $-30$ $60$
$37-40$ $17$ $38.5$ $-1$ $1$ $-17$ $17$
$41-44$ $21$ $42.5$ $0$ $0$ $0$ $0$
$45-48$ $22$ $46.5$ $1$ $1$ $22$ $22$
$49-52$ $25$ $50.5$ $2$ $4$ $50$ $100$
  $100$       $25$ $199$

here, $N=100,$ $h=4$

Let the assumed mean, $A,$ be $42.5$

Mean,   $\bar x = A + \frac{{\sum\limits_{i = 1}^5 {{f_i}{y_i}} }}{N} \times h$

$ = 42.5 + \frac{{25}}{{100}} \times 4 = 43.5$

Variance,  $\left( {{\sigma ^2}} \right) = \frac{{{h^2}}}{{{N^2}}}\left[ {N\sum\limits_{i = 1}^5 {{f_i}{y_i}^2 - {{\left( {\sum\limits_{i = 1}^5 {{f_i}{y_i}} } \right)}^2}} } \right]$

$=\frac{16}{10000}\left[100 \times 199-(25)^{2}\right]$

$=\frac{16}{10000}[19900-625]$

$=\frac{16}{10000} \times 19275$

$=30.84$

$\therefore$ Standard deviation $(\sigma)=5.55$

Similar Questions

જો વિતરણના વિચરણ અને પ્રમાણિત વિચલનનો સહગુણક અનુક્રમે $50\%$  અને $20\%$  હોય તો તેનો મધ્યક શું થાય ?

$10$ વિદ્યાર્થીઓના ગુણના મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $50$ અને $12$ જોવામાં આવેલ છે.ત્યાર બાદ એવુ જોવામાં આવ્યું કે બે ગુણ $20$ અને $25$ ને ખોટી રીતે અનુક્રમે $45$ અને $50$ વાંચવામાં આવ્યા હતા. તો સાચું વિચરણ $......$ છે.

  • [JEE MAIN 2023]

આપેલ આવૃત્તિ વિતરણ માટે મધ્યક અને વિચરણ શોધો.

વર્ગ  $0-10$ $10-20$ $20-30$ $30-40$ $40-50$
આવૃત્તિ  $5$ $8$ $15$ $16$ $6$

જો માહિતી : $7, 8, 9, 7, 8, 7, \mathop \lambda \limits^. , 8$ નો મધ્યક $8$ હોય તો માહિતીનો વિચરણ મેળવો 

  • [JEE MAIN 2018]

$20$ અવલોકનનો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $10$ અને $2.5$ છે. એક અવલોકન ભૂલ થી $35$ ને બદલે $25$ લેવાય ગયું છે. જો $\alpha$ અને $\sqrt{\beta}$ એ સાચી માહિતીના મધ્યક અને પ્રમાણિત વિચલન છે તો $(\alpha, \beta)$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]