यदि $\sum_{ i =1}^{ n }\left( x _{ i }- a \right)= n \quad$ तथा $\quad \sum_{ i =1}^{ n }\left( x _{ i }- a \right)^{2}= na$, $( n , a >1)$ हैं, तो $n$ प्रेक्षणों $x _{1}, x _{2}, \ldots, x _{ n }$ का मानक विचलन है 

  • [JEE MAIN 2020]
  • A

    $n \sqrt{ a -1}$

  • B

    $\sqrt{a-1}$

  • C

    $a-1$

  • D

    $\sqrt{n(a-1)}$

Similar Questions

निम्नलिखित आँकडों के लिए मानक विचलन ज्ञात कीजिए

${x_i}$ $3$ $8$ $13$ $18$ $25$
${f_i}$ $7$ $10$ $15$ $10$ $6$

निम्नलिखित बंटन के लिए माध्य, प्रसरण और मानक विचलन ज्ञात कीजिए

वर्ग $30-40$ $40-50$ $50-60$ $60-70$ $70-80$ $80-90$ $90-100$
बारंबारता $3$ $7$ $12$ $15$ $8$ $3$ $2$

$40$ प्रेक्षणों का माध्य तथा मानक विचलन क्रमशः $30$ तथा $5$ हैं। यह पाया गया कि इनमें से दो प्रेक्षण $12$ तथा $10$ गलती से लिखे गए। यदि गलती से लिखे दो प्रेक्षणों को हटाने के पश्चात् शेष आकड़ों का मानक विचलन $\sigma$ है, तो $38 \sigma^2$ बराबर है $...........$

  • [JEE MAIN 2022]

माना बारंबारता बंटन

$\mathrm{x}$ $\mathrm{x}_{1}=2$ $\mathrm{x}_{2}=6$ $\mathrm{x}_{3}=8$ $\mathrm{x}_{4}=9$
$\mathrm{f}$ $4$ $4$ $\alpha$ $\beta$

के माध्य तथा प्रसरण क्रमशः $6$ तथा $6.8$ हैं। यदि $x _{3}$ को $8$ से $7$ कर दिया जाए, तो नये आँकड़ों का माध्य होगा

  • [JEE MAIN 2021]

माना $2 n$ प्रेक्षणों की एक शंखला में, आधे $a$ के बराबर है तथा शेष आधे $- a$ के बराबर है। प्रत्येक प्रेक्षण में एक अचर $b$ जोड़ने पर नये समूह का माध्य तथा मानक विचलन क्रमशः $5$ तथा $20$ हैं। तो $a ^{2}+ b ^{2}$ का मान बराबर है

  • [JEE MAIN 2021]