यदि $\sum_{ i =1}^{ n }\left( x _{ i }- a \right)= n \quad$ तथा $\quad \sum_{ i =1}^{ n }\left( x _{ i }- a \right)^{2}= na$, $( n , a >1)$ हैं, तो $n$ प्रेक्षणों $x _{1}, x _{2}, \ldots, x _{ n }$ का मानक विचलन है
$n \sqrt{ a -1}$
$\sqrt{a-1}$
$a-1$
$\sqrt{n(a-1)}$
प्राप्तांकों के दिये गये बंटन का माध्य $35.16$ तथा मानक विचलन $19.76$ है, तब प्रसरण गुणांक है
$(2n +1)$ प्रेक्षणों ${x_1},\, - {x_1},\,{x_2},\, - {x_2},\,.....{x_n},\, - {x_n}$ तथा $0$ (शून्य) के लिये (जहाँ $x$ के सभी मान भिन्न है)। माना $S.D$ तथा $M.D.$ क्रमश: मानक विचलन तथा माध्यिका प्रदर्शित करते हैं, तब निम्न में से कौनसा सदैव सत्य है
एक विद्यार्थी द्वारा $10$ प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $15$ तथा $15$ निकाले गए। विद्यार्थी ने एक परीक्षण $15$ को गलती से $25$ लिया। तो सही मानक विचलन है $...........$
बीस प्रेक्षणों का माध्य तथा मानक विचलन क्रमश: $10$ तथा $2$ हैं। जाँच करने पर यह पाया गया कि प्रेक्षण $8$ गलत है। निम्न में से प्रत्येक का सही माध्य तथा मानक विचलन ज्ञात कीजिए यदि
उसे $12$ से बदल दिया जाए।
यदि बारंबारता बंटन
$X_i$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ |
Frequency $f_i$ | $3$ | $6$ | $16$ | $\alpha$ | $9$ | $5$ | $6$ |
का प्रसरण $3$ है, तो $\alpha$ बराबर है________________.