यदि अशून्य $a,b,c$ के लिये $\Delta = \left| {\,\begin{array}{*{20}{c}}{1 + a}&1&1\\1&{1 + b}&1\\1&1&{1 + c}\end{array}} \right| = 0$, तो $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = $
$abc$
$\frac{1}{{abc}}$
$ - (a + b + c)$
$-1$
माना रैखिक समीकरण निकाय $4 x +\lambda y +2 z =0$ ; $2 x - y + z =0$ ; $\mu x +2 y +3 z =0, \lambda, \mu \in R$ का एक अतुच्छ हल है। तो निम्न में से कौन सा सत्य है ?
यदि $\left| {\,\begin{array}{*{20}{c}}a&b&{a\alpha - b}\\b&c&{b\alpha - c}\\2&1&0\end{array}\,} \right| = 0$ तथा $\alpha \ne \frac{1}{2},$ तो
$\left| {\begin{array}{*{20}{c}}0&a&{ - b}\\{ - a}&0&c\\b&{ - c}&0\end{array}} \right| = $
यदि समीकरण $\left| {\,\begin{array}{*{20}{c}}x&3&7\\2&x&2\\7&6&x\end{array}\,} \right| = 0$का एक मूल -$9 $ हो, तो अन्य दो मूल होंगे
समीकरणों ${x_2} - {x_3} = 1,\,\, - {x_1} + 2{x_3} = - 2,$ ${x_1} - 2{x_2} = 3$ के हलों की संख्या है