माना रैखिक समीकरण निकाय $4 x +\lambda y +2 z =0$ ; $2 x - y + z =0$ ; $\mu x +2 y +3 z =0, \lambda, \mu \in R$ का एक अतुच्छ हल है। तो निम्न में से कौन सा सत्य है ?

  • [JEE MAIN 2021]
  • A

    $\mu=6, \lambda \in R$

  • B

    $\lambda=2, \mu \in R$

  • C

    $\lambda=3, \mu \in R$

  • D

    $\mu=-6, \lambda \in R$

Similar Questions

यदि रेखीय समीकरण निकाय

$2 x + y - z =7$

$x -3 y +2 z =1$

$x +4 y +\delta z = k$ है, जहाँ $\delta, k \in R$ के अनंत हल है, तो $\delta+ k$ बराबर है :

  • [JEE MAIN 2022]

रैखिक समीकरण निकाय

$2 x-y+3 z=5$

$3 x+2 y-z=7$

$4 x+5 y+\alpha z=\beta$

के लिए निम्न में से कौन सा सही नहीं है ?

  • [JEE MAIN 2023]

यदि समीकरण निकाय

$2 x+y-z=5$

$2 x-5 y+\lambda z=\mu$

$x+2 y-5 z=7$

के अनंत हल हैं, तो $(\lambda+\mu)^2+(\lambda-\mu)^2$ बराबर है

  • [JEE MAIN 2023]

प्रत्येक में $k$ का मान ज्ञात कीजिए यदि त्रिभुजों का क्षेत्रफल $4$ वर्ग इकाई है जहाँ शीर्षबिंदु निम्नलिखित हैं:

$(\mathrm{k}, 0),(4,0),(0,2)$

यदि $\left| {\,\begin{array}{*{20}{c}}{a + x}&{a - x}&{a - x}\\{a - x}&{a + x}&{a - x}\\{a - x}&{a - x}&{a + x}\end{array}\,} \right| = 0$ तो  $x$  के मान होंगे