यदि $\left| {\,\begin{array}{*{20}{c}}a&b&{a\alpha - b}\\b&c&{b\alpha - c}\\2&1&0\end{array}\,} \right| = 0$ तथा $\alpha \ne \frac{1}{2},$ तो
$a,b,c$ समान्तर श्रेणी में हैं
$a,b,c$ हैगुणोत्तर श्रेणी में हैं
$a,b,c$ गुणोत्तर श्रेणी में हैं
इनमें से कोई नहीं
$\left| {\,\begin{array}{*{20}{c}}1&{\cos (\beta - \alpha )}&{\cos (\gamma - \alpha )}\\{\cos (\alpha - \beta )}&1&{\cos (\gamma - \beta )}\\{\cos (\alpha - \gamma )}&{\cos (\beta - \gamma )}&1\end{array}} \right|$ का मान होगा
यदि $x,$ if $\left| {\,\begin{array}{*{20}{c}}{ - x}&1&0\\1&{ - x}&1\\0&1&{ - x}\end{array}\,} \right| = 0$ तो $x$ का मान होगा
यदि समीकरण निकाय $x+y+z=5$, $x+2 y+3 z=9$, $x+3 y+\alpha z=\beta$ के असंख्य हल हैं, तो $\beta-\alpha$ बराबर है
यदि $x + y - z = 0,\,3x - \alpha y - 3z = 0,\,\,x - 3y + z = 0$ का अशून्य हल हो, तो $\alpha = $
$\lambda$ के वास्तविक मानों, जिनके लिए रैखिक समीकरण निकाय
$2 x -3 y +5 z =9$
$x +3 y - z =-18$
$3 x - y +\left(\lambda^2-|\lambda|\right) z =16$
का कोई हल नहीं है, की संख्या है :-