For non zero, $a,b,c$ if $\Delta = \left| {\,\begin{array}{*{20}{c}}{1 + a}&1&1\\1&{1 + b}&1\\1&1&{1 + c}\end{array}} \right| = 0$, then the value of $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = $

  • A

    $abc$

  • B

    $\frac{1}{{abc}}$

  • C

    $ - (a + b + c)$

  • D

    $-1$

Similar Questions

If the system of linear equations $x + ky + 3z = 0;3x + ky - 2z = 0$ ; $2x + 4y - 3z = 0$  has a non-zero solution $\left( {x,y,z} \right)$ then $\frac{{xz}}{{{y^2}}} = $. . . . .

  • [JEE MAIN 2018]

Statement $-1 :$Determinant of a skew-symmetric matrix of order $3$ is zero

Statement $-2 :$ For any matrix $A,$ $\det \left( {{A^T}} \right) = {\rm{det}}\left( A \right)$ and $\det \left( { - A} \right) = - {\rm{det}}\left( A \right)$ Where $\det \left( A \right) = A$. Then :

  • [AIEEE 2011]

The roots of the equation $\left| {\,\begin{array}{*{20}{c}}x&0&8\\4&1&3\\2&0&x\end{array}\,} \right| = 0$ are equal to

Let $m$ and $M$ be respectively the minimum and maximum values of

$\left|\begin{array}{ccc}\cos ^{2} x & 1+\sin ^{2} x & \sin 2 x \\ 1+\cos ^{2} x & \sin ^{2} x & \sin 2 x \\ \cos ^{2} x & \sin ^{2} x & 1+\sin 2 x\end{array}\right|$.

Then the ordered pair $( m , M )$ is equal to

 

  • [JEE MAIN 2020]

Consider the system of equations

$ x-2 y+3 z=-1 $ ; $ -x+y-2 z=k $ ; $ x-3 y+4 z=1$

$STATEMENT -1$ : The system of equations has no solution for $\mathrm{k} \neq 3$. and

$STATEMENT - 2$ : The determinant $\left|\begin{array}{ccc}1 & 3 & -1 \\ -1 & -2 & \mathrm{k} \\ 1 & 4 & 1\end{array}\right| \neq 0$, for $\mathrm{k} \neq 3$.

  • [IIT 2008]