શૂન્યતર $a,b,c$ માટે જો $\Delta = \left| {\,\begin{array}{*{20}{c}}{1 + a}&1&1\\1&{1 + b}&1\\1&1&{1 + c}\end{array}} \right| = 0$, તો $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = . . $
$abc$
$\frac{1}{{abc}}$
$ - (a + b + c)$
$-1$
જો $a > 0$ અને વિવેચક $a{x^2} + 2bx + c < 0 $ છે, તો $\left| {\,\begin{array}{*{20}{c}}a&b&{ax + b}\\b&c&{bx + c}\\{ax + b}&{bx + c}&0\end{array}\,} \right|$ = . . .
જો $ \alpha _1, \alpha _2$ એ $\alpha $ ની બે કિમંતો છે કે જેથી સુરેખ સમીકરણો $2 \alpha x + y = 5, x - 6y = \alpha $ અને $x + y = 2$ એ સુસંગત થાય તો $ |2(\alpha _1 + \alpha _2)| $ મેળવો.
$xyz$ ના ગુણાકારની ન્યૂનતમ કિમત મેળવો કે જેથી $\left| {\begin{array}{*{20}{c}}
x&1&1 \\
1&y&1 \\
1&1&z
\end{array}} \right|$ ની કિમંત અનૃણ મળે.
નિશ્ચાયકનું મૂલ્ય શોધો : $\left|\begin{array}{cc}2 & 4 \\ -5 & -1\end{array}\right|$