निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।

${x_i}$ $6$ $10$ $14$ $18$ $24$ $28$ $30$
${f_i}$ $2$ $4$ $7$ $12$ $8$ $4$ $3$
 

Vedclass pdf generator app on play store
Vedclass iOS app on app store
${x_i}$ ${f_i}$ ${f_i}{x_i}$ ${{x_i} - \bar x}$ ${\left( {{x_i} - \bar x} \right)^2}$ ${f_i}{\left( {{x_i} - \bar x} \right)^2}$
$6$ $2$ $12$ $-13$ $169$ $338$
$10$ $4$ $40$ $-9$ $81$ $324$
$14$ $7$ $98$ $-5$ $25$ $175$
$18$ $12$ $216$ $-1$ $1$ $12$
$24$ $8$ $192$ $5$ $25$ $200$
$28$ $4$ $112$ $9$ $81$ $324$
$30$ $3$ $90$ $11$ $121$ $363$
  $40$ $760$     $1736$

Here, $N = 40,\sum\limits_{i = 1}^7 {{f_1}{x_1}}  = 760$

$\therefore \bar x = \frac{{\sum\limits_{i = 1}^7 {{f_1}{x_1}} }}{N} = \frac{{760}}{{40}} = 19$

Variance $ = \left( {{\sigma ^2}} \right) = \frac{1}{N}\sum\limits_{i = 1}^7 {{f_1}{{\left( {{x_1} - \bar x} \right)}^2} = } \frac{1}{{40}} \times 1736 = 43.4$

Similar Questions

पाँच प्रेक्षणों का माध्य $4$ है तथा इनका प्रसरण $5.2$ है। यदि इन प्रेक्षणों में से तीन $1, 2$ तथा $6$ है, तब अन्य दो प्रेक्षण हैं

निम्नलिखित बंटन के लिए माध्य, प्रसरण और मानक विचलन ज्ञात कीजिए

वर्ग $30-40$ $40-50$ $50-60$ $60-70$ $70-80$ $80-90$ $90-100$
बारंबारता $3$ $7$ $12$ $15$ $8$ $3$ $2$

$7$ प्रेक्षणों का माध्य तथा प्रसरण क्रमशः $8$ तथा $16$ हैं। यदि पाँच क्रमशः प्रेक्षण $2,4,10,12,14$ हैं, तो शेष दो प्रेक्षणों का निरपेक्ष अंतर है

  • [JEE MAIN 2020]

$\alpha$, $\beta$  तथा  $\gamma$  का प्रसरण $9$ है, तब $5$$\alpha$, $5$$\beta$, तथा $5$$\gamma$ का प्रसरण है

सात प्रेक्षणों का माध्य तथा प्रसरण क्रमश: $8$ तथा $16$ हैं। यदि इनमें से पाँच प्रेक्षण $2,4,10,12,14$ हैं तो शेष दो प्रेक्षण ज्ञात कीजिए।