$7$ प्रेक्षणों का माध्य तथा प्रसरण क्रमशः $8$ तथा $16$ हैं। यदि पाँच क्रमशः प्रेक्षण $2,4,10,12,14$ हैं, तो शेष दो प्रेक्षणों का निरपेक्ष अंतर है
$2$
$4$
$3$
$1$
निम्नलिखित श्रेणी का मानक विचलन है
Measurements |
0-10 |
10-20 |
20-30 |
30-40 |
Frequency |
1 |
3 |
4 |
2 |
माना $10$ प्रेक्षणों $\mathrm{a}_1, \mathrm{a}_2, \ldots . \mathrm{a}_{10}$ के लिए $\sum_{\mathrm{k}=1}^{10} \mathrm{a}_{\mathrm{k}}=50$तथा $\sum_{\forall k < j} a_k \cdot a_j=1100$ है। तो $a_1, a_2, \ldots, a_{10}$ का मानक विचलन बराबर है :
बीस प्रेक्षणों का माध्य तथा मानक विचलन क्रमश: $10$ तथा $2$ हैं। जाँच करने पर यह पाया गया कि प्रेक्षण $8$ गलत है। निम्न में से प्रत्येक का सही माध्य तथा मानक विचलन ज्ञात कीजिए यदि
गलत प्रेक्षण हटा दिया जाए।
यदि निम्न बारंबारता बंटन :का प्रसरण $50$ है, तो $x$ का मान है |
वर्ग | $10-20$ | $20-30$ | $30-40$ |
बारंबारता | $2$ | $x$ | $2$ |
यदि आठ संख्याओं $3,7,9,12,13,20, x$ तथा $y$ के माध्य तथा प्रसरण क्रमश: $10$ तथा $25$ हैं, तो $x \cdot y$ बराबर हैं