निम्नलिखित बंटन के लिए माध्य, प्रसरण और मानक विचलन ज्ञात कीजिए
वर्ग | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
बारंबारता | $3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |
From the given data, we construct the following Table
Class |
Freq $\left( {{f_i}} \right)$ |
Mid-point $\left( {{x_i}} \right)$ |
${f_i}{x_i}$ | ${\left( {{x_i} - \bar x} \right)^2}$ | ${f_i}{\left( {{x_i} - \bar x} \right)^2}$ |
$30-40$ | $3$ | $35$ | $105$ | $729$ | $2187$ |
$40-50$ | $7$ | $45$ | $315$ | $289$ | $2023$ |
$50-60$ | $12$ | $55$ | $660$ | $49$ | $588$ |
$60-70$ | $15$ | $6$ | $975$ | $9$ | $135$ |
$70-80$ | $8$ | $75$ | $600$ | $169$ | $1352$ |
$80-90$ | $3$ | $85$ | $255$ | $529$ | $1587$ |
$90-100$ | $2$ | $95$ | $190$ | $1089$ | $2178$ |
$50$ | $3100$ | $10050$ |
Thus Mean $\bar x = \frac{1}{N}\sum\limits_{i = 1}^7 {{f_i}{x_i}} = \frac{{3100}}{{50}} = 62$
Variance $\left( {{\sigma ^2}} \right) = \frac{1}{N}\sum\limits_{i = 1}^7 {{f_i}{{\left( {{x_i} - \bar x} \right)}^2}} $
$ = \frac{1}{{50}} \times 10050 = 201$
and Standerd deviation $\left( \sigma \right) = \sqrt {201} = 14.18$
यदि निम्न बारंबारता बंटन :का प्रसरण $50$ है, तो $x$ का मान है |
वर्ग | $10-20$ | $20-30$ | $30-40$ |
बारंबारता | $2$ | $x$ | $2$ |
छ: प्रेक्षणों का माध्य तथा मानक विचलन क्रमश: $8$ तथा $4$ हैं। यदि प्रत्येक प्रेक्षण को तीन से गुणा कर दिया जाए तो परिणामी प्रेक्षणों का माध्य व मानक विचलन ज्ञात कीजिए।
माना एक चर $x$ द्वारा लिये गये मान इस प्रकार हैं, कि $a \le {x_i} \le b$ जहाँ ${x_i}$, $i = 1,2, …. n$ के लिये $i$ वीं स्थिति में $x$ का मान प्रदर्शित करता है
निम्नलिखित श्रेणी का मानक विचलन है
Measurements |
0-10 |
10-20 |
20-30 |
30-40 |
Frequency |
1 |
3 |
4 |
2 |
यदि आँकड़ों का प्रत्येक प्रेक्षण, जिसका प्रसरण ${\sigma ^2}$ है, $\lambda$ से बढ़ाया जाता है, तब नये समूह का प्रसरण है....