निम्नलिखित बंटन के लिए माध्य, प्रसरण और मानक विचलन ज्ञात कीजिए
वर्ग | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
बारंबारता | $3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |
From the given data, we construct the following Table
Class |
Freq $\left( {{f_i}} \right)$ |
Mid-point $\left( {{x_i}} \right)$ |
${f_i}{x_i}$ | ${\left( {{x_i} - \bar x} \right)^2}$ | ${f_i}{\left( {{x_i} - \bar x} \right)^2}$ |
$30-40$ | $3$ | $35$ | $105$ | $729$ | $2187$ |
$40-50$ | $7$ | $45$ | $315$ | $289$ | $2023$ |
$50-60$ | $12$ | $55$ | $660$ | $49$ | $588$ |
$60-70$ | $15$ | $6$ | $975$ | $9$ | $135$ |
$70-80$ | $8$ | $75$ | $600$ | $169$ | $1352$ |
$80-90$ | $3$ | $85$ | $255$ | $529$ | $1587$ |
$90-100$ | $2$ | $95$ | $190$ | $1089$ | $2178$ |
$50$ | $3100$ | $10050$ |
Thus Mean $\bar x = \frac{1}{N}\sum\limits_{i = 1}^7 {{f_i}{x_i}} = \frac{{3100}}{{50}} = 62$
Variance $\left( {{\sigma ^2}} \right) = \frac{1}{N}\sum\limits_{i = 1}^7 {{f_i}{{\left( {{x_i} - \bar x} \right)}^2}} $
$ = \frac{1}{{50}} \times 10050 = 201$
and Standerd deviation $\left( \sigma \right) = \sqrt {201} = 14.18$
यदि $\sum_{ i =1}^{ n }\left( x _{ i }- a \right)= n \quad$ तथा $\quad \sum_{ i =1}^{ n }\left( x _{ i }- a \right)^{2}= na$, $( n , a >1)$ हैं, तो $n$ प्रेक्षणों $x _{1}, x _{2}, \ldots, x _{ n }$ का मानक विचलन है
एक विद्यार्थी द्वारा $10$ प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $15$ तथा $15$ निकाले गए। विद्यार्थी ने एक परीक्षण $15$ को गलती से $25$ लिया। तो सही मानक विचलन है $...........$
पाँच प्रेक्षणों का माध्य तथा प्रसरण क्रमशः $4$ तथा $5.20$ है। यदि तीन प्रेक्षण $3,4$ तथा $4$ हो, तो अन्य दो प्रेक्षणों के अन्तर का निरपेक्ष मान होगा
माना $6$ प्रेक्षणों $\mathrm{a}, \mathrm{b}, 68,44,48,60$ के माध्य तथा प्रसरण क्रमशः $55$ तथा $194$ हैं। यदि $\mathrm{a}>\mathrm{b}$ है। तो $\mathrm{a}+3 \mathrm{~b}$ बराबर है
यदि माध्य विचलन ($M.D.$) $12$ है, तब मानक विचलन है