Find the mean and variance for the data

${x_i}$ $6$ $10$ $14$ $18$ $24$ $28$ $30$
${f_i}$ $2$ $4$ $7$ $12$ $8$ $4$ $3$

 

Vedclass pdf generator app on play store
Vedclass iOS app on app store
${x_i}$ ${f_i}$ ${f_i}{x_i}$ ${{x_i} - \bar x}$ ${\left( {{x_i} - \bar x} \right)^2}$ ${f_i}{\left( {{x_i} - \bar x} \right)^2}$
$6$ $2$ $12$ $-13$ $169$ $338$
$10$ $4$ $40$ $-9$ $81$ $324$
$14$ $7$ $98$ $-5$ $25$ $175$
$18$ $12$ $216$ $-1$ $1$ $12$
$24$ $8$ $192$ $5$ $25$ $200$
$28$ $4$ $112$ $9$ $81$ $324$
$30$ $3$ $90$ $11$ $121$ $363$
  $40$ $760$     $1736$

Here, $N = 40,\sum\limits_{i = 1}^7 {{f_1}{x_1}}  = 760$

$\therefore \bar x = \frac{{\sum\limits_{i = 1}^7 {{f_1}{x_1}} }}{N} = \frac{{760}}{{40}} = 19$

Variance $ = \left( {{\sigma ^2}} \right) = \frac{1}{N}\sum\limits_{i = 1}^7 {{f_1}{{\left( {{x_1} - \bar x} \right)}^2} = } \frac{1}{{40}} \times 1736 = 43.4$

Similar Questions

What is the standard deviation of the following series

class $0-10$ $10-20$ $20-30$ $30-40$
Freq $1$ $3$ $4$ $2$

 

For a frequency distribution, standard deviation is computed by

If the mean deviation about median for the number $3,5,7,2\,k , 12,16,21,24$ arranged in the ascending order, is $6$ then the median is

  • [JEE MAIN 2022]

Calculate mean, variance and standard deviation for the following distribution.

Classes $30-40$ $40-50$ $50-60$ $60-70$ $70-80$ $80-90$ $90-100$
${f_i}$ $3$ $7$ $12$ $15$ $8$ $3$ $2$

The mean and the variance of five observations are $4$ and $5.20,$ respectively. If three of the observations are $3, 4$ and $4;$ then the absolute value of the difference of the other two observations, is

  • [JEE MAIN 2019]