Find the mean and variance for the data
${x_i}$ | $6$ | $10$ | $14$ | $18$ | $24$ | $28$ | $30$ |
${f_i}$ | $2$ | $4$ | $7$ | $12$ | $8$ | $4$ | $3$ |
${x_i}$ | ${f_i}$ | ${f_i}{x_i}$ | ${{x_i} - \bar x}$ | ${\left( {{x_i} - \bar x} \right)^2}$ | ${f_i}{\left( {{x_i} - \bar x} \right)^2}$ |
$6$ | $2$ | $12$ | $-13$ | $169$ | $338$ |
$10$ | $4$ | $40$ | $-9$ | $81$ | $324$ |
$14$ | $7$ | $98$ | $-5$ | $25$ | $175$ |
$18$ | $12$ | $216$ | $-1$ | $1$ | $12$ |
$24$ | $8$ | $192$ | $5$ | $25$ | $200$ |
$28$ | $4$ | $112$ | $9$ | $81$ | $324$ |
$30$ | $3$ | $90$ | $11$ | $121$ | $363$ |
$40$ | $760$ | $1736$ |
Here, $N = 40,\sum\limits_{i = 1}^7 {{f_1}{x_1}} = 760$
$\therefore \bar x = \frac{{\sum\limits_{i = 1}^7 {{f_1}{x_1}} }}{N} = \frac{{760}}{{40}} = 19$
Variance $ = \left( {{\sigma ^2}} \right) = \frac{1}{N}\sum\limits_{i = 1}^7 {{f_1}{{\left( {{x_1} - \bar x} \right)}^2} = } \frac{1}{{40}} \times 1736 = 43.4$
What is the standard deviation of the following series
class | $0-10$ | $10-20$ | $20-30$ | $30-40$ |
Freq | $1$ | $3$ | $4$ | $2$ |
If the mean deviation about median for the number $3,5,7,2\,k , 12,16,21,24$ arranged in the ascending order, is $6$ then the median is
Calculate mean, variance and standard deviation for the following distribution.
Classes | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
${f_i}$ | $3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |
The mean and the variance of five observations are $4$ and $5.20,$ respectively. If three of the observations are $3, 4$ and $4;$ then the absolute value of the difference of the other two observations, is