सात प्रेक्षणों का माध्य तथा प्रसरण क्रमश: $8$ तथा $16$ हैं। यदि इनमें से पाँच प्रेक्षण $2,4,10,12,14$ हैं तो शेष दो प्रेक्षण ज्ञात कीजिए।
Let the remaining two observations be $x$ and $y$.
The observations are $2,4,10,12,14, x , y$
Mean, $\bar{x}=\frac{2+4+10+12+14+x+y}{7}=8$
$\Rightarrow 56=42+x+y$
$\Rightarrow x+y=14$
Varaiance $ = 16 = \frac{1}{n}\sum\limits_{i = 1}^7 {{{\left( {{x_i} - \bar x} \right)}^2}} $
$16=\frac{1}{7}[(-6)^{2}+(-4)^{2}+(2)^{2}$
$+(4)^{2}+(6)^{2}+x^{2}+y^{2}-2 \times 8(x+y)+2 \times(8)^{2}]$
$16=\frac{1}{7}\left[36+16+4+16+36+x^{2}+y^{2}-16(14)+2(64)\right]$ .......[ using $(1)$ ]
$16=\frac{1}{7}\left[108+x^{2}+y^{2}-224+128\right]$
$16=\frac{1}{7}\left[12+x^{2}+y^{2}\right]$
$\Rightarrow x^{2}+y^{2}=112-12=100$
$\Rightarrow x^{2}+y^{2}=100$ ........$(2)$
From $(1),$ we obtain
$x^{2}+y^{2}+2 x y=196$ .........$(3)$
From $(2)$ and $(3),$ we obtain
$2 x y=196-100$
$\Rightarrow 2 x y=96$ .........$(4)$
Subtracting $(4)$ from $(2),$ we obtain
$x^{2}+y^{2}-2 x y=100-96$
$\Rightarrow(x-y)^{2}=4$
$\Rightarrow x-y=\pm 2$ .........$(5)$
Therefore, from $(1)$ and $(5),$ we obtain
$x=8$ and $y=6$ when $x-y=2$
$x=6$ and $y=8$ when $x-y=-2$
Thus, the remaining observations are $6$ and $8 .$
यदि पाँच प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $\frac{24}{5}$ तथा $\frac{194}{25}$ हैं तथा प्रथम चार प्रेक्षणों का माध्य $\frac{7}{2}$, है, तो प्रथम चार प्रेक्षणों का प्रसरण बराबर है
लघु विधि द्वारा माध्य, प्रसरण व मानक विचलन ज्ञात कीजिए।
ऊँचाई (सेमी में) | $70-75$ | $75-80$ | $80-85$ | $85-90$ | $90-95$ | $95-100$ | $100-105$ | $105-110$ | $110-115$ |
बच्चों की संख्या |
$3$ | $4$ | $7$ | $7$ | $15$ | $9$ | $6$ | $6$ | $3$ |
$(2n +1)$ प्रेक्षणों ${x_1},\, - {x_1},\,{x_2},\, - {x_2},\,.....{x_n},\, - {x_n}$ तथा $0$ (शून्य) के लिये (जहाँ $x$ के सभी मान भिन्न है)। माना $S.D$ तथा $M.D.$ क्रमश: मानक विचलन तथा माध्यिका प्रदर्शित करते हैं, तब निम्न में से कौनसा सदैव सत्य है
पाँच प्रेक्षणों का माध्य तथा प्रसरण क्रमशः $4$ तथा $5.20$ है। यदि तीन प्रेक्षण $3,4$ तथा $4$ हो, तो अन्य दो प्रेक्षणों के अन्तर का निरपेक्ष मान होगा
पाँच प्रेक्षणों का माध्य $4.4$ तथा इनका प्रसरण $8.24$ है। यदि तीन प्रेक्षण $1, 2$ तथा $6$ हैं, तब अन्य दो प्रेक्षण हैं