બિંદુઓ $(4, 3)$ અને $(- 1,4)$ માંથી પસાર થતા હોય તથા જેનો પ્રધાન અક્ષ $x-$ અક્ષ હોય તેવા ઉપવલયનું સમીકરણ મેળવો.
Solution The standard form of the ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 .$
since the points $(4,\,3)$ and $(-1,\,4)$ lie on the ellipse, we have
$\frac{16}{a^{2}}+\frac{9}{b^{2}}=1$ ............ $(1)$
and $\frac{1}{a^{2}}+\frac{16}{b^{2}}=1$ ......... $(2)$
Solving equations $(1)$ and $(2),$ we find that $a^{2}=\frac{247}{7}$ and $b^{2}=\frac{247}{15}$
Hence the required equation is
$\frac{x^{2}}{\left(\frac{247}{7}\right)}$ $+\frac{y^{2}}{\frac{247}{15}}=1,$ i.e., $7 x^{2}+15 y^{2}=247$
ધારો કે $\frac{x^2}{\mathrm{a}^2}+\frac{y^2}{\mathrm{~b}^2}=1, \mathrm{a}>\mathrm{b}$ એક ઉપવલય છે, જેની ઉત્કેન્દ્રતા $\frac{1}{\sqrt{2}}$ અને નાભિલંબની લંબાઈ $\sqrt{14}$ છે. તો $\frac{x^2}{\mathrm{a}^2}-\frac{y^2}{\mathrm{~b}^2}=1$ ની ઉત્કેન્દ્રતાનો વર્ગ__________ છે.
જો $x^{2}+9 y^{2}-4 x+3=0, x, y \in R$, હોય તો અનુક્રમે $x$ અને $y$ એ . . . . અંતરાલમાં આવે.
જો વક્રો $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ અને $x^{2}+y^{2}=12$ ના સામાન્ય સ્પર્શકની ઢાળ $m$ હોય, તો $12\,m^{2}=\dots\dots\dots$
જે ઉપવલયનું એક શિરોબિંદુ $(0, 7)$ હોય અને નિયામિકા $y = 12 $ હોય, તે ઉપવલયનું સમીકરણ....
ધારો કે ઉપવલય $\frac{x^2}{9}+\frac{y^2}{4}=1$ પરનું એક બિંદુ $P$ છે. ધારો કે બિંદુ $P$ માંથી પસાર થતી અને $y$-અક્ષને સમાંતર રેખા, વર્તુળ $x^2+y^2=9$ ને બિંદુ $\mathrm{Q}$ માં એવી રીતે મળે છે કે જેથી $\mathrm{P}$ અને $\mathrm{Q}, x$-અક્ષની એકન બાજુએ આવે છે. તો $\mathrm{P}$ ઉપવલય પર ગતિ કરે ત્યારે $\mathrm{PQ}$ પરના, $\mathrm{PR}: \mathrm{RQ}=4: 3$ થાય તેવા બિંદુ $\mathrm{R}$ ના બિંદુપથની ઉત્કેન્દ્રતા........................ છે .