Find the equation of the ellipse, with major axis along the $x-$ axis and passing through the points $(4,\,3)$ and $(-1,\,4)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Solution The standard form of the ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 .$

since the points $(4,\,3)$ and $(-1,\,4)$ lie on the ellipse, we have

$\frac{16}{a^{2}}+\frac{9}{b^{2}}=1$      ............ $(1)$

and      $\frac{1}{a^{2}}+\frac{16}{b^{2}}=1$  ......... $(2)$

Solving equations $(1)$ and $(2),$ we find that $a^{2}=\frac{247}{7}$ and $b^{2}=\frac{247}{15}$

Hence the required equation is

$\frac{x^{2}}{\left(\frac{247}{7}\right)}$ $+\frac{y^{2}}{\frac{247}{15}}=1,$ i.e., $7 x^{2}+15 y^{2}=247$

Similar Questions

The equation of the tangent to the ellipse ${x^2} + 16{y^2} = 16$ making an angle of ${60^o}$ with $x$ - axis is

Number of common tangents of the ellipse  $\frac{{{{\left( {x - 2} \right)}^2}}}{9} + \frac{{{{\left( {y + 2} \right)}^2}}}{4} = 1$ and the circle $x^2 + y^2 -4x + 2y + 4 = 0$ is 

The eccentricity of an ellipse whose length of latus rectum is equal to distance between its foci, is

Latus rectum of ellipse $4{x^2} + 9{y^2} - 8x - 36y + 4 = 0$ is

Let an ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a^{2}>b^{2}$, passes through $\left(\sqrt{\frac{3}{2}}, 1\right)$ and has ecentricity $\frac{1}{\sqrt{3}} .$ If a circle, centered at focus $\mathrm{F}(\alpha, 0), \alpha>0$, of $\mathrm{E}$ and radius $\frac{2}{\sqrt{3}}$, intersects $\mathrm{E}$ at two points $\mathrm{P}$ and $\mathrm{Q}$, then $\mathrm{PQ}^{2}$ is equal to:

  • [JEE MAIN 2021]