ધારો કે $\frac{x^2}{\mathrm{a}^2}+\frac{y^2}{\mathrm{~b}^2}=1, \mathrm{a}>\mathrm{b}$ એક ઉપવલય છે, જેની ઉત્કેન્દ્રતા $\frac{1}{\sqrt{2}}$ અને નાભિલંબની લંબાઈ $\sqrt{14}$ છે. તો $\frac{x^2}{\mathrm{a}^2}-\frac{y^2}{\mathrm{~b}^2}=1$ ની ઉત્કેન્દ્રતાનો વર્ગ__________ છે.
$3$
$7 / 2$
$3 / 2$
$5 / 2$
ઉપવલય ${x^2} + 4{y^2} = 4$ એ અક્ષોને સમાંતર લંબચોરસને અંદર સ્પર્શે છે.જો આ લંબચોરસ એ બિંદુ $(4,0) $ માંથી પસાર થતા બીજા ઉપવલયને અંદરથી સ્પશતું હોય તેા આ ઉપવલયનું સમીકરણ મેળવો.
ધારો કે $P$ એ $F_1$ અને $F_2$ નાભિઓ વાળા ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$પરનું ચલિત બિંદુ છે. જો ત્રિકોણ $PF_1F_2$ નું ક્ષેત્રફળ $A$ હોય તો $A$ નું મહત્તમ મુલ્ય :
ઉપવલયનું નાભિકેન્દ્ર ઉગમબિંદુ આગળ છે. રેખા $x = 4$ અને નિયામિકા છે અને ઉત્કેન્દ્રતા $1/2$ છે તો પ્રધાન અક્ષની લંબાઈ મેળવો.
ઉપવલય $4{x^2} + 9{y^2} = 1$ પરના . . . . . બિંદુથી દોરવામાં આવેલ સ્પર્શકએ રેખા $8x = 9y$ ને સમાંતર થાય.
પ્રધાન અક્ષ $= 8$ અને ઉત્કેન્દ્રતા $= 1/2$ વાળા ઉપવલયનું સમીકરણ મેળવો . $(a > b)$