उस दीर्घवृत्त का समीकरण ज्ञात कीजिए, जिसकी दीर्घ अक्ष, $x-$ अक्ष के अनुदिश है और $(4,3)$ तथा $(-1,4)$ दीर्घवृत्त पर स्थित हैं।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Solution The standard form of the ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 .$

since the points $(4,\,3)$ and $(-1,\,4)$ lie on the ellipse, we have

$\frac{16}{a^{2}}+\frac{9}{b^{2}}=1$      ............ $(1)$

and      $\frac{1}{a^{2}}+\frac{16}{b^{2}}=1$  ......... $(2)$

Solving equations $(1)$ and $(2),$ we find that $a^{2}=\frac{247}{7}$ and $b^{2}=\frac{247}{15}$

Hence the required equation is

$\frac{x^{2}}{\left(\frac{247}{7}\right)}$ $+\frac{y^{2}}{\frac{247}{15}}=1,$ i.e., $7 x^{2}+15 y^{2}=247$

Similar Questions

दीर्घवृत्त $9{x^2} + 5{y^2} = 45$ के नाभियों के बीच की दूरी है

माना दीर्घवत्त $\frac{x^{2}}{8}+\frac{y^{2}}{4}=1$ पद दूसरे चतुर्थाश में एक बिंदु $P$ इस प्रकार है कि $P$ पर दीर्घवत की स्पर्श रेखा, रेखा $x +2 y =0$ के लंबवत हैं। माना दीर्घवत्त की नाभियों $S$ तथा $S^{\prime}$ है तथा इसकी उत्केन्द्रता $e$ है। यदि त्रिभुज SPS' का क्षेत्रफल $A$ है तो $\left(5- e ^{2}\right) . A$ का मान है

  • [JEE MAIN 2021]

यदि $P \equiv (x,\;y)$, ${F_1} \equiv (3,\;0)$, ${F_2} \equiv ( - 3,\;0)$ और $16{x^2} + 25{y^2} = 400$ तो $P{F_1} + P{F_2}$ का मान है

  • [IIT 1998]

प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए

दीर्घ अक्ष के अंत्य बिंदु $(0, \pm \sqrt{5}),$ लघु अक्ष के अंत्य बिंदु $(±1,0)$

उस दीर्घवृत्त का समीकरण, जिसकी एक नाभि $(4,0)$ है एवं उत्केन्द्रता $\frac{4}{5}$  है, होगा