જો વક્રો $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ અને $x^{2}+y^{2}=12$ ના સામાન્ય સ્પર્શકની ઢાળ $m$ હોય, તો $12\,m^{2}=\dots\dots\dots$
$6$
$9$
$10$
$12$
જો ઉપવલયની નાભીઓ વચ્ચેનું અંતર તેની નાભીલંબની લંબાઈ કરતાં અડધું હોય તો ઉપવલયની ઉત્કેન્દ્ર્તા ............... થાય
એક માણસ રમતના મેદાનમાં અંકિત કેડી પર એવી રીતે દોડે છે કે જેથી બે ધજાના દંડાના અંતરનો સરવાળો અચળ $10$ મી રહે છે. જો બંને ધજાના દંડા વચ્ચેનું અંતર $8$ મી હોય, તો માણસના ગતિમાર્ગનું સમીકરણ શોધો.
ઉપવલયો $E_k: k x^2+k^2 y^2=1, k=1,2, \ldots, 20$ ધ્યાને લો. જેનું એક અંત્યબિંદુ પ્રધાન અક્ષ પર અને બીજું ગૌણ અક્ષ પર હોય તેવી, ઉપવલય $E_k$ ની યાર જીવાઆને સ્પર્શતું વર્તુળ ધારો કે $C_K$ છે.જો $r_k$ એ વર્તુળ $C_k$ ની ત્રિજ્યા હોય, તો $\sum \limits_{k=1}^{20} \frac{1}{r_k^2}$ નું મૂલ્ય $........$ છે.
જો ઉપવલય $\frac{{{{\text{x}}^{\text{2}}}}}{{{a^2}\,\, + \;\,1}}\,\, + \;\,\frac{{{y^2}}}{{{a^2}\,\, + \;\,2}}\,\, = \,\,1$ ની ઉત્કેન્દ્રીતા $\frac{1}{{\sqrt 6 }}, $ હોય, તો ઉપવલય નો નાભિલંબની લંબાઈ મેળવો.
જો બે બિંદુઓ $(x_1, y_1)$ અને $(x_2y_2)$ માંથી ઉપવલય $\frac{{{x^2}}}{{{a^2}}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$પર દોરેલા સ્પરશકોની સ્પર્શ જીવાઓ કાટખૂણે હોય, તો $\frac{{{x_1}{x_2}}}{{{y_1}{y_2}}}\,\, = \,\,..........$