$1$ और $2$ के बीच की पाँच परिमेय संख्याएँ ज्ञात कीजिए।
We can approach this problem in at least two ways.
Recall that to find a rational number between $r$ and $s,$ you can add $r$ and $s$ and divide the sum by $2,$ that is $\frac{r+s}{2}$ lies between $r$ and $s .$ So, $\frac{3}{2}$ is a number between $1$ and $2 .$ You can proceed in this manner to find four more rational numbers between $1$ and $2 .$ These four numbers are $\frac{5}{4}, \frac{11}{8}, \frac{13}{8}$ and $\frac{7}{4}$.
Or
The other option is to find all the five rational numbers in one step. since we want five numbers, we write $1$ and $2$ as rational numbers with denominator $5+1$, i.e., $1=\frac{6}{6}$ and $2=\frac{12}{6} .$ Then you can check that $\frac{7}{6}, \frac{8}{6}, \frac{9}{6}, \frac{10}{6}$ and $\frac{11}{6}$ are all rational numbers between $1$ and $2 .$ So, the five numbers are $\frac{7}{6}, \frac{4}{3}, \frac{3}{2}, \frac{5}{3}$ and $\frac{11}{6}$.
$\frac{p}{q}(q \neq 0)$ के रूप की परिमेय संख्याओं के अनेक उदाहरण लीजिए, जहाँ $p$ और $q$ पूर्णाक
हैं , जिनका $1$ के अतिरिक्त अन्य कोई उभयनिष्ठ गुणनखंड नहीं है और जिसका सांत दशमलव निरूपण ( प्रसार) है। क्या आप यह अनुमान लगा सकते हैं कि $q$ को कौन-सा गुण अवश्य संतुष्ट करना चाहिए ?
संख्या रेखा पर $5$ दशमलव स्थानों तक, अर्थात् $5.37777$ तक $5.3 \overline{7}$ का निरूपण देखिए।
$\frac{1}{2+\sqrt{3}}$ के हर का परिमेयकरण कीजिए।
निम्नलिखित को $\frac{p}{q}$ के रूप में व्यक्त कीजिए, जहाँ $p$ और $q$ पूर्णांक हैं तथा $q \neq 0$ है
$(i)$ $0 . \overline{6}$
$(ii)$ $0 . 4\overline{7}$
$(iii)$ $0 . \overline{001}$
दिखाइए कि $0.3333 \ldots=0 . \overline{3}$ को $\frac{p}{q}$ के रूप में व्यक्त किया जा सकता है, जहाँ $p$ और $q$ पूर्णांक हैं और $q \neq 0$ है।