$\frac{1}{7}$ और $\frac{2}{7}$ के बीच की एक अपरिमेय संख्या ज्ञात कीजिए।
We saw that $\frac{1}{7}=0 . \overline{142857}$. So, you can easily calculate $\frac{2}{7}=0 . \overline{285714}$.
To find an irrational number between $\frac{1}{7}$ and $\frac{2}{7},$ we find a number which is non-terminating non-recurring lying between them. Of course, you can find infinitely many such numbers.
An example of such a number is $0.150150015000150000 \ldots$
क्या शून्य एक परिमेय संख्या है ? क्या इसे आप $\frac{p}{q}$ के रूप में लिख सकते हैं, जहाँ $p$ और $q$ पूर्णांक हैं और $q \neq 0$ है ?
निम्नलिखित व्यंजकों में से प्रत्येक व्यंजक को सरल कीजिए
$(i)$ $(3+\sqrt{3})(2+\sqrt{2})$
$(ii)$ $(3+\sqrt{3})(3-\sqrt{3})$
$(iii)$ $(\sqrt{5}+\sqrt{2})^{2}$
$(iv)$ $(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})$
$0.99999......$ को $\frac{p}{q}$ के रूप में व्यक्त कीजिए। क्या आप अपने उत्तर से आश्चर्यचकित है ? अपने अध्यापक और कक्षा के सहयोगियों के साथ उत्तर की सार्थकता पर चर्चा कीजिए।
दिखाइए कि संख्या रेखा पर $\sqrt{5}$ को किस प्रकार निरूपित किया जा सकता है।
$\frac{5}{\sqrt{3}-\sqrt{5}}$ के हर का परिमेयकरण कीजिए।