જો ${(2 + a)^{{\rm{50 }}}}$ નું $17$ મું અને $18$ મું પદ સમાન હોય, તો $a$ શોધો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The $(r+1)^{\text {th }}$ term of the expansion $(x+y)^{n}$ is given by ${T_{r + 1}} = \,{\,^n}{C_r}{x^{n - r}}{y^r}$

For the $17^{\text {th }}$ term, we have, $r+1=17,$ i.e., $r=16$

Therefore,       ${T_{17}} = {T_{16 + 1}} = {\,^{50}}{C_{16}}{(2)^{50 - 16}}{a^{16}}$

$ = {\,^{50}}{C_{16}}{2^{34}}{a^{16}}$

Simlarly,      ${T_{18}} = {\,^{50}}{C_{17}}{2^{33}}{a^{17}}$

Given that    $T_{17}=T_{18}$

So   ${\,^{50}}{C_{16}}{(2)^{34}}{a^{16}} = {\,^{50}}{C_{17}}{(2)^{33}}{a^{17}}$

Therefore       $\frac{{{\,^{50}}{C_{16}} \cdot {2^{34}}}}{{{\,^{50}}{C_{17}} \cdot {2^{33}}}} = \frac{{{a^{17}}}}{{{a^{16}}}}$

i.e., $a = \frac{{{\,^{50}}{C_{16}} \times 2}}{{{\,^{50}}{C_{17}}}} = \frac{{50!}}{{16!34!}} \times \frac{{17! \cdot 33!}}{{50!}} \times 2 = 1$

Similar Questions

${\left( {\frac{{{x^2}}}{2} - \frac{2}{x}} \right)^9}$ ના વિસ્તરણમાં ${x^{-9}}$ નો સહગુણક મેળવો.

${({5^{1/2}} + {7^{1/8}})^{1024}}$ ના વિસ્તરણમાં પૂર્ણાક પદની સંખ્યા મેળવો.

$\left(1-x^{2}+3 x^{3}\right)\left(\frac{5}{2} x^{3}-\frac{1}{5 x^{2}}\right)^{11}, x \neq 0$ ના વિસ્તરણમાં $x$ થી સ્વતંત્ર હોય તેવું પદ.................. છે

  • [JEE MAIN 2022]

ધારોકે $0 \leq r \leq n$. જો ${ }^{n+1} C_{r+1}:{ }^n C_r:{ }^{n-1} C_{r-1}=55: 35: 21$ હોય, તો $2 n+5 r=$.........

  • [JEE MAIN 2024]

$1 + (1 + x) + {(1 + x)^2} + ..... + {(1 + x)^n}$ ના વિસ્તરણમાં ${x^k}(0 \le k \le n)$ નો સહગુણક મેળવો.