Find $a$ if the $17^{\text {th }}$ and $18^{\text {th }}$ terms of the expansion ${(2 + a)^{{\rm{50 }}}}$ are equal.
The $(r+1)^{\text {th }}$ term of the expansion $(x+y)^{n}$ is given by ${T_{r + 1}} = \,{\,^n}{C_r}{x^{n - r}}{y^r}$
For the $17^{\text {th }}$ term, we have, $r+1=17,$ i.e., $r=16$
Therefore, ${T_{17}} = {T_{16 + 1}} = {\,^{50}}{C_{16}}{(2)^{50 - 16}}{a^{16}}$
$ = {\,^{50}}{C_{16}}{2^{34}}{a^{16}}$
Simlarly, ${T_{18}} = {\,^{50}}{C_{17}}{2^{33}}{a^{17}}$
Given that $T_{17}=T_{18}$
So ${\,^{50}}{C_{16}}{(2)^{34}}{a^{16}} = {\,^{50}}{C_{17}}{(2)^{33}}{a^{17}}$
Therefore $\frac{{{\,^{50}}{C_{16}} \cdot {2^{34}}}}{{{\,^{50}}{C_{17}} \cdot {2^{33}}}} = \frac{{{a^{17}}}}{{{a^{16}}}}$
i.e., $a = \frac{{{\,^{50}}{C_{16}} \times 2}}{{{\,^{50}}{C_{17}}}} = \frac{{50!}}{{16!34!}} \times \frac{{17! \cdot 33!}}{{50!}} \times 2 = 1$
Coefficient of $x^6$ in the binomial expansion ${\left( {\frac{{4{x^2}}}{3}\; - \;\frac{3}{{2x}}} \right)^9}$ is
If coefficients of ${(2r + 1)^{th}}$ term and ${(r + 2)^{th}}$ term are equal in the expansion of ${(1 + x)^{43}},$ then the value of $r$ will be
If $\left(\frac{3^{6}}{4^{4}}\right) \mathrm{k}$ is the term, independent of $\mathrm{x}$, in the binomial expansion of $\left(\frac{\mathrm{x}}{4}-\frac{12}{\mathrm{x}^{2}}\right)^{12}$, then $\mathrm{k}$ is equal to ...... .
The coefficient of ${x^{ - 7}}$ in the expansion of ${\left( {ax - \frac{1}{{b{x^2}}}} \right)^{11}}$ will be
Let $\alpha$ be the constant term in the binomial expansion of $\left(\sqrt{ x }-\frac{6}{ x ^{\frac{3}{2}}}\right)^{ n }, n \leq 15$. If the sum of the coefficients of the remaining terms in the expansion is $649$ and the coefficient of $x^{-n}$ is $\lambda \alpha$, then $\lambda$ is equal to $..........$.