यदि $(2+a)^{50}$ के द्विपद प्रसार का सत्रहवाँ और अट्ठारहवाँ पद समान हो तो $a$ का मान ज्ञात कीजिए।
The $(r+1)^{\text {th }}$ term of the expansion $(x+y)^{n}$ is given by ${T_{r + 1}} = \,{\,^n}{C_r}{x^{n - r}}{y^r}$
For the $17^{\text {th }}$ term, we have, $r+1=17,$ i.e., $r=16$
Therefore, ${T_{17}} = {T_{16 + 1}} = {\,^{50}}{C_{16}}{(2)^{50 - 16}}{a^{16}}$
$ = {\,^{50}}{C_{16}}{2^{34}}{a^{16}}$
Simlarly, ${T_{18}} = {\,^{50}}{C_{17}}{2^{33}}{a^{17}}$
Given that $T_{17}=T_{18}$
So ${\,^{50}}{C_{16}}{(2)^{34}}{a^{16}} = {\,^{50}}{C_{17}}{(2)^{33}}{a^{17}}$
Therefore $\frac{{{\,^{50}}{C_{16}} \cdot {2^{34}}}}{{{\,^{50}}{C_{17}} \cdot {2^{33}}}} = \frac{{{a^{17}}}}{{{a^{16}}}}$
i.e., $a = \frac{{{\,^{50}}{C_{16}} \times 2}}{{{\,^{50}}{C_{17}}}} = \frac{{50!}}{{16!34!}} \times \frac{{17! \cdot 33!}}{{50!}} \times 2 = 1$
$(1+a)^{m+n}$ के प्रसार में सिद्ध कीजिए कि $a^{m}$ तथा $a^{n}$ के गुणांक बराबर हैं |
यदि $\left( x ^{2}+\frac{1}{ bx }\right)^{11}, b \neq 0$, में $x ^{7}$ का गुणांक तथा $\left( x -\frac{1}{ bx ^{2}}\right)^{11}$, में $x ^{-7}$ का गुणांक बराबर है, तो $b$ का मान बराबर है ?
${\left( {x + \frac{2}{{{x^2}}}} \right)^{15}}$ के प्रसार में $x$ से स्वतंत्र पद है
दिखाइए कि $(1+x)^{2 n}$ के प्रसार में मध्य पद $\frac{1.3 .5 \ldots(2 n-1)}{n !} 2 n\, x^{n},$ है, जहाँ $n$ एक धन पूर्णांक है।
${(a - b)^n},\,n \ge 5,$ के द्विपद विस्तार में पांचवें तथा छठवें पदों का योग शून्य है, तब $\frac{a}{b}$ का मान होगा