गुणनखंड कीजिए
$x^{3}+x^{2}-4 x-4$
Let $f(x)=x^{3}+x^{2}-4 x-4$ be the given polynomial. The factors of the constant term $-4$ are $±1,±2,±4$
We have,
$f(-1)=(-1)^{3}+(-1)^{2}-4(-1)-4=-1+1+4-4=0$
And, $f(2)=(2)^{3}+(2)^{2}-4(2)-4=8+4-8-4=0$
So, $\quad(x+1)$ and $(x-2)$ are factors of $f(x)$
$\Rightarrow \quad(x+1)(x-2)$ is also a factor of $f(x)$
$\Rightarrow \quad x^{2}-x-2$ is a factor of $f(x)$
Let us know divide $f(x)=x^{3}+x^{2}-4 x-4$ by $x^{2}-x-2$ to get the other factors of $f(x).$
By long division, we have
$\begin{array}{l}x^{2}-x-2 |\overline {x^{3}+x^{2}-4 x-4} (x+2)\\ \;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\; x^{3}-x^{2}+2 x\;\;\;\;\;\;\; \\ \hline \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;2 x^{2}-2 x-4 \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;2 x^{2}-2 x-4 \\ \hline \;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \;\; 0 \end{array}$
$\therefore x^{3}+x^{2}-4 x-4=\left(x^{2}-x-2\right)(x+2)$
$\Rightarrow x^{3}+x^{2}-4 x-4=(x+1)(x-2)(x+2)$
Hence, $x^{3}+x^{2}-4 x-4=(x-2)(x+1)(x+2)$
$249^{2}-248^{2}$ का मान है
निम्नलिखित बहुपदों के लिए, $p(0), p(1)$ और $p(-2)$ ज्ञात कीजिए
$p(y)=(y+2)(y-2)$
गुणनखंड कीजिए
$1+64 x^{3}$
$\left(25 x^{2}-1\right)+(1+5 x)^{2}$ के गुणनखंडों में से एक है
यदि $a+b+c=0$ है, तो $a^{3}+b^{3}+c^{3}$ बराबर है