Factorise :
$x^{3}+x^{2}-4 x-4$
Let $f(x)=x^{3}+x^{2}-4 x-4$ be the given polynomial. The factors of the constant term $-4$ are $±1,±2,±4$
We have,
$f(-1)=(-1)^{3}+(-1)^{2}-4(-1)-4=-1+1+4-4=0$
And, $f(2)=(2)^{3}+(2)^{2}-4(2)-4=8+4-8-4=0$
So, $\quad(x+1)$ and $(x-2)$ are factors of $f(x)$
$\Rightarrow \quad(x+1)(x-2)$ is also a factor of $f(x)$
$\Rightarrow \quad x^{2}-x-2$ is a factor of $f(x)$
Let us know divide $f(x)=x^{3}+x^{2}-4 x-4$ by $x^{2}-x-2$ to get the other factors of $f(x).$
By long division, we have
$\begin{array}{l}x^{2}-x-2 |\overline {x^{3}+x^{2}-4 x-4} (x+2)\\ \;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\; x^{3}-x^{2}+2 x\;\;\;\;\;\;\; \\ \hline \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;2 x^{2}-2 x-4 \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;2 x^{2}-2 x-4 \\ \hline \;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \;\; 0 \end{array}$
$\therefore x^{3}+x^{2}-4 x-4=\left(x^{2}-x-2\right)(x+2)$
$\Rightarrow x^{3}+x^{2}-4 x-4=(x+1)(x-2)(x+2)$
Hence, $x^{3}+x^{2}-4 x-4=(x-2)(x+1)(x+2)$
By remainder Theorem find the remainder, when $p(x)$ is divided by $g(x),$ where
$p(x)=x^{3}-6 x^{2}+2 x-4, \quad g(x)=1-\frac{3}{2} x$
If $p(x)=x^{4}-2 x^{3}+3 x^{2}-a x+3 a-7$ is divided by $(x+1),$ then the remainder is $19 .$ Find the value of a. Also, find the remainder, when $p(x)$ is divided by $(x+2)$
If $p(x)=x^{2}-4 x+3$ then, find the value of $p(2)-p(-1)+p\left(\frac{1}{2}\right)$
Check whether the polynomial
$p(x)=x^{3}+9 x^{2}+26 x+24$ is a multiple of $x+2$ or not.
Find the zeroes of the polynomial:
$p(x)=(x-2)^{2}-(x+2)^{2}$