$6$ રેડિયનને અંશ માપમાં ફેરવો.
We know that $\pi$ radian $=180^{\circ}$
Hence $6 \text { radians }=\frac{180}{\pi} \times 6 \text { degree }=\frac{1080 \times 7}{22} \text { degree }$
${ = 343\frac{7}{{11}}{\text{ degree }} = {{343}^\circ } + \frac{{7 \times 60}}{{11}}{\text{ minute }}\left[ {{\text{ as }}{1^\circ } = {{60}^\prime }} \right]}$
${ = {{343}^\circ } + {{38}^\prime } + \frac{2}{{11}}{\text{ minute }}}$ ${[{\text{as }}{{\text{1}}^\prime }{\text{ = 6}}{{\text{0}}^{\prime \prime }}]}$
${ = {{343}^\circ } + {{38}^\prime } + {{10.9}^{\prime \prime }}}$ $=343^{\circ} 38^{\prime} 11^{\prime \prime}$ approximately
Hence $6$ radians $=343^{\circ} 38^{\prime} 11^{\prime \prime}$ approximately.
જો $\sin x=-\frac{3}{5}$, જ્યાં $\pi < x < \frac{3 \pi}{2}$, તો $80\left(\tan ^2 x-\cos x\right)=$...........
મૂલ્ય શોધો. $\sin 765^{\circ}$
કિંમત શોધો : $\tan 15^{\circ}$
જો $\left| {\cos \,\theta \,\left\{ {\sin \theta + \sqrt {{{\sin }^2}\theta + {{\sin }^2}\alpha } } \right\}\,} \right|\, \le k,$ તો $k$ ની કિમત મેળવો.
જો $\sin x + {\rm{cosec}}\,x = 2,$ તો $sin^n x + cosec^n x = .. . .$