Convert $6$ radians into degree measure.
We know that $\pi$ radian $=180^{\circ}$
Hence $6 \text { radians }=\frac{180}{\pi} \times 6 \text { degree }=\frac{1080 \times 7}{22} \text { degree }$
${ = 343\frac{7}{{11}}{\text{ degree }} = {{343}^\circ } + \frac{{7 \times 60}}{{11}}{\text{ minute }}\left[ {{\text{ as }}{1^\circ } = {{60}^\prime }} \right]}$
${ = {{343}^\circ } + {{38}^\prime } + \frac{2}{{11}}{\text{ minute }}}$ ${[{\text{as }}{{\text{1}}^\prime }{\text{ = 6}}{{\text{0}}^{\prime \prime }}]}$
${ = {{343}^\circ } + {{38}^\prime } + {{10.9}^{\prime \prime }}}$ $=343^{\circ} 38^{\prime} 11^{\prime \prime}$ approximately
Hence $6$ radians $=343^{\circ} 38^{\prime} 11^{\prime \prime}$ approximately.
Find the angle in radian through which a pendulum swings if its length is $75\, cm$ and the tip describes an arc of length.
$10 \,cm$
If $\theta $ and $\phi $ are angles in the $1^{st}$ quadrant such that $\tan \theta = 1/7$ and $\sin \phi = 1/\sqrt {10} $.Then
If $\sin \theta + {\rm{cosec}}\theta = 2,$ the value of ${\sin ^{10}}\theta + {\rm{cose}}{{\rm{c}}^{10}}\theta $ is
If $x = \sec \theta + \tan \theta ,$ then $x + \frac{1}{x} = $
$\cot x - \tan x = $