કિંમત શોધો : $\tan 15^{\circ}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

 $\tan 15^{\circ}=\tan \left(45^{\circ}-30^{\circ}\right)$

$=\frac{\tan 45^{\circ}-\tan 30^{\circ}}{1+\tan 45^{\circ} \tan 30^{\circ}} \quad\left[\tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y}\right]$

$=\frac{1-\frac{1}{\sqrt{3}}}{1+1\left(\frac{1}{\sqrt{3}}\right)}=\frac{\frac{\sqrt{3}-1}{\sqrt{3}}}{\frac{\sqrt{3}+1}{\sqrt{3}}}$

$=\frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)(\sqrt{3}-1)}=\frac{3+1-2 \sqrt{3}}{(\sqrt{3})^{2}-(1)^{2}}$

$=\frac{4-2 \sqrt{3}}{3-1}=2-\sqrt{3}$

Similar Questions

આપેલ પૈકી ક્યૂ સત્ય છે ?

જો $x\sin 45^\circ {\cos ^2}60^\circ = \frac{{{{\tan }^2}60^\circ {\rm{cosec}}30^\circ }}{{\sec 45^\circ {{\cot }^2}30^\circ }},$ તો $x = $

$\tan \frac{13 \pi}{12}$ નું મૂલ્ય શોધો.

જો $\cot x=-\frac{5}{12}, x$ બીજા ચરણમાં હોય, તો બાકીનાં પાંચ ત્રિકોણમિતિય વિધેયોનાં મૂલ્યો શોધો.

સાબિત કરો કે : $\frac{(\sin 7 x+\sin 5 x)+(\sin 9 x+\sin 3 x)}{(\cos 7 x+\cos 5 x)+(\cos 9 x+\cos 3 x)}=\tan 6 x$