तीन प्रेक्षणों $a , b$ तथा $c$ का विचार कीजिए, जिनके लिए $b = a + c$ है। यदि $a +2, b +2, c +2$ का मानक विचलन $d$ है, तो निम्न में से कौन सा सत्य है ?
$b^{2}=3\left(a^{2}+c^{2}\right)+9 d^{2}$
$b^{2}=a^{2}+c^{2}+3 d^{2}$
$b^{2}=3\left(a^{2}+c^{2}+d^{2}\right)$
$b ^{2}=3\left( a ^{2}+ c ^{2}\right)-9 d ^{2}$
यदि $0, 1, 2, 3, …..,9$ का मानक विचलन $K$ है, तब $10, 11, 12, 13,…..,19$ का मानक विचलन है
$7$ प्रेक्षणों का माध्य तथा प्रसरण क्रमशः $8$ तथा $16$ हैं। यदि पाँच क्रमशः प्रेक्षण $2,4,10,12,14$ हैं, तो शेष दो प्रेक्षणों का निरपेक्ष अंतर है
माना $8$ संख्याओं $\mathrm{x}, \mathrm{y}, 10,12,6,12,4,8$ के माध्य तथा प्रसरण क्रमशः $9$ तथा $9.25$ हैं। यदि $x>y$ है, तो $3 x-2 y$ बराबर है_____
किसी चर $x$ का मानक विचलन है। तब चर $\frac{{ax + b}}{c}$ का मानक विचलन है, (जहाँ $a, b, c$ अचर है)
दो आंकड़ा समुच्चय, जिनमें से प्रत्येक में $5$ अवयव हैं के प्रसरण $4$ तथा $5$ हैं तथा उनके तदनुरूपी माध्य क्रमशः $2$ तथा $4$ हैं। मिश्रित आँकड़ा-समुच्चय का प्रसरण है