ત્રણ અવલોકન $a, b$ અને $c$ આપેલ છે કે જેથી $b = a + c $ થાય છે. જો $a +2$ $b +2, c +2$ નું પ્રમાણિત વિચલન $d$ હોય તો આપેલ પૈકી ક્યૂ સત્ય છે $?$
$b^{2}=3\left(a^{2}+c^{2}\right)+9 d^{2}$
$b^{2}=a^{2}+c^{2}+3 d^{2}$
$b^{2}=3\left(a^{2}+c^{2}+d^{2}\right)$
$b ^{2}=3\left( a ^{2}+ c ^{2}\right)-9 d ^{2}$
પ્રથમ પ્રાકૃતિક $n$ સંખ્યાઓ માટે પ્રમાણિત વિચલન મેળવો
ધારોકે $3 n$ સંખ્યાનું વિચરણ $4$ આપેલ છે. જો આ ગણમાં પ્રથમ $2 n$ સંખ્યાનો મધ્યક $6$ હોય અને બાકીની સંખ્યા $n$ નો મધ્યક $3$ છે. એક નવો ગણ બનાવીએ કે જેમાં પ્રથમ $2 n$ સંખ્યામાં $1$ ઉમેરીએ અને પછીની $n$ સંખ્યામાંથી $1$ બાદ કરીયે તો આ નવા ગણનું વિચરણ $k$ હોય તો $9 k$ મેળવો.
જો $n$ અવલોકનો $x_1, x_2,.....x_n$ એવા છે કે જેથી $\sum\limits_{i = 1}^n {x_i^2} = 400$ અને $\sum\limits_{i = 1}^n {{x_i}} = 100$ થાય તો નીચેનામાંથી $n$ ની શકય કિમત મેળવો.
જો આપેલ દરેક $n$ અવલોકનો ને કોઈ ધન સંખ્યા $'k'$ વડે ગુણવવામાં આવે તો નવા અવલોકનોના ગણ માટે
ધારો કે $x_1, x_2, ……, x_n $ એ $n$ અવલોકનો છે અને ધારો કે $\bar x$એ એમનો સમાંતર મધ્યક છે અને $\sigma^2$ એ તેમનું વિચરણ છે.
વિધાન $ - 1 : 2x_1, 2x_2, ……, 2x_n$ નું વિચરણ $4\sigma^2$ છે.
વિધાન $- 2 : 2x_1, 2x_2, ….., 2x_n$ નો સમાંતર મધ્યક $4\,\bar x$છે.