निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।
तीन के प्रथम $10$ गुणज
The first $10$ multiples of $3$ are
$3,6,9,12,15,18,21,24,27,30$
Here, number of observations, $n=10$
Mean, $\bar x = \frac{{\sum\limits_{i = 1}^{10} {{x_i}} }}{{10}} = \frac{{165}}{{10}} = 16.5$
The following table is obtained.
${x_i}$ | $\left( {{x_i} - \bar x} \right)$ | ${\left( {{x_i} - \bar x} \right)^2}$ |
$3$ | $-13.5$ | $182.25$ |
$6$ | $-10.5$ | $110.25$ |
$9$ | $-7.5$ | $56.25$ |
$12$ | $-4.5$ | $20.25$ |
$15$ | $-1.5$ | $2.25$ |
$18$ | $1.5$ | $2.25$ |
$21$ | $4.5$ | $20.25$ |
$24$ | $7.5$ | $56.25$ |
$27$ | $10.5$ | $110.25$ |
$30$ | $13.5$ | $182.25$ |
Variance $\left( {{\sigma ^2}} \right) = \frac{1}{n}\sum\limits_{i = 1}^{10} {{{\left( {{x_1} - \bar x} \right)}^2} = } \frac{1}{{10}} \times 742.5 = 74.25$
$742.5$
$20$ प्रेक्षणों का प्रसरण $5$ है। यदि प्रत्येक प्रेक्षण को $2$ से गुणा किया गया हो तो प्राप्त प्रेक्षणों का प्रसरण ज्ञात कीजिए।
निम्नलिखित आँकड़ों के लिए प्रसरण व मानक विचलन ज्ञात कीजिए
${x_i}$ | $4$ | $8$ | $11$ | $17$ | $20$ | $24$ | $32$ |
${f_i}$ | $3$ | $5$ | $9$ | $5$ | $4$ | $3$ | $1$ |
माना $10$ प्रेक्षणों $\mathrm{a}_1, \mathrm{a}_2, \ldots . \mathrm{a}_{10}$ के लिए $\sum_{\mathrm{k}=1}^{10} \mathrm{a}_{\mathrm{k}}=50$तथा $\sum_{\forall k < j} a_k \cdot a_j=1100$ है। तो $a_1, a_2, \ldots, a_{10}$ का मानक विचलन बराबर है :
यदि प्रत्येक प्रेक्षण $x_{1}, x_{2}, \ldots, x_{n}$ को ' $a$ ', से बढ़ाया जाए जहाँ $a$ एक ऋणात्मक या धनात्मक संख्या है, तो दिखाइए कि प्रसरण अपरिवर्तित रहेगा।
माना $n$ प्रेक्षणों $x_{1}, x_{2}, \ldots, x_{ n }$ के माध्य बहुलक तथा प्रसरण क्रमश: $\bar{x}, M$ तथा $\sigma^{2}$ तथा $d _{ i }=-x_{ i }- a$, $i=1,2, \ldots, n$ हैं, जहाँ $a$ कोई संख्या हैं।
कथन $I$ : $d _{1}, d _{2}, \ldots, d _{ n }$ का प्रसरण $\sigma^{2}$ हैं
कथन $II$ : $d _{1}, d _{2}, \ldots, d _{ n }$ के माध्य तथा बहुलक क्रमाश: $-\bar{x}- a$ तथा $- M - a$ है