यदि माध्य विचलन ($M.D.$) $12$ है, तब मानक विचलन है
$15$
$12$
$24$
इनमें से कोई नहीं
किसी प्रयोग में $x$ पर $15$ प्रेक्षणों के निम्न परिणाम प्राप्त होते हैं, $\sum {x^2} = 2830$, $\sum x = 170$. प्रेक्षण करने पर एक मान $20$ गलत पाया गया तथा उसे सही मान $30$ से प्रतिस्थापित किया गया। तब सही प्रसरण है...
यदि आरोही क्रम में लिखी संख्याओं $3,5,7,2 k$, $12,16,21,24$ का माध्यिका के सापेक्ष माध्य विचलन 6 है, तो माध्यिका है
यदि दस धन पूर्णांकों $1,1,1, \ldots, 1, k$ का प्रसरण $10$ से कम है, तो $k$ का अधिकतम संभावित मान ......... है |
मान $9=\mathrm{x}_1 < \mathrm{x}_2 < \ldots<\mathrm{x}_7$ एक $A.P.$ में हैं, जिसका सर्वा अन्तर $\mathrm{d}$ है। यदि $\mathrm{x}_1, \mathrm{x}_2 \ldots, \mathrm{x}_7$ का मानक विचलन $4$ है तथा माध्य $\overline{\mathrm{x}}$ है, तो $\overline{\mathrm{x}}+\mathrm{x}_6$ बराबर है:
$20$ प्रेक्षणों का प्रसरण $5$ है। यदि प्रत्येक प्रेक्षण को $2$ से गुणा किया गया हो तो प्राप्त प्रेक्षणों का प्रसरण ज्ञात कीजिए।