Consider three observations $a, b$ and $c$ such that $b = a + c .$ If the standard deviation of $a +2$ $b +2, c +2$ is $d ,$ then which of the following is true ?

  • [JEE MAIN 2021]
  • A

    $b^{2}=3\left(a^{2}+c^{2}\right)+9 d^{2}$

  • B

    $b^{2}=a^{2}+c^{2}+3 d^{2}$

  • C

    $b^{2}=3\left(a^{2}+c^{2}+d^{2}\right)$

  • D

    $b ^{2}=3\left( a ^{2}+ c ^{2}\right)-9 d ^{2}$

Similar Questions

The data is obtained in tabular form as follows.

${x_i}$ $60$ $61$ $62$ $63$ $64$ $65$ $66$ $67$ $68$
${f_i}$ $2$ $1$ $12$ $29$ $25$ $12$ $10$ $4$ $5$

For two data sets, each of size $5$, the variances are given to be $4$ and $5$ and the corresponding means are given to be $2$ and $4$, respectively. The variance of the combined data set is

  • [AIEEE 2010]

Let sets $A$ and $B$ have $5$ elements each. Let the mean of the elements in sets $A$ and $B$ be $5$ and $8$ respectively and the variance of the elements in sets $A$ and $B$ be $12$ and $20$ respectively $A$ new set $C$ of $10$ elements is formed by subtracting $3$ from each element of $A$ and adding 2 to each element of B. Then the sum of the mean and variance of the elements of $C$ is $.......$.

  • [JEE MAIN 2023]

The mean and variance of eight observations are $9$ and $9.25,$ respectively. If six of the observations are $6,7,10,12,12$ and $13,$ find the remaining two observations.

Let $ \bar x , M$ and $\sigma^2$ be respectively the mean, mode and variance of $n$ observations $x_1 , x_2,...,x_n$ and $d_i\, = - x_i - a, i\, = 1, 2, .... , n$, where $a$ is any number.
Statement $I$: Variance of $d_1, d_2,.....d_n$ is $\sigma^2$.
Statement $II$ : Mean and mode of $d_1 , d_2, .... d_n$ are $-\bar x -a$ and $- M - a$, respectively

  • [JEE MAIN 2014]